Damia Mawad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5729233/publications.pdf

Version: 2024-02-01

201674 214800 2,295 61 27 47 citations h-index g-index papers 62 62 62 3552 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	A Single Component Conducting Polymer Hydrogel as a Scaffold for Tissue Engineering. Advanced Functional Materials, 2012, 22, 2692-2699.	14.9	254
2	A conducting polymer with enhanced electronic stability applied in cardiac models. Science Advances, 2016, 2, e1601007.	10.3	173
3	Auxetic Cardiac Patches with Tunable Mechanical and Conductive Properties toward Treating Myocardial Infarction. Advanced Functional Materials, 2018, 28, 1800618.	14.9	167
4	Adhesive biomaterials for tissue reconstruction. Journal of Chemical Technology and Biotechnology, 2008, 83, 464-472.	3.2	119
5	Hybrid Alkyl–Ethylene Glycol Side Chains Enhance Substrate Adhesion and Operational Stability in Accumulation Mode Organic Electrochemical Transistors. Chemistry of Materials, 2019, 31, 9797-9806.	6.7	97
6	Electroconductive Hydrogel Based on Functional Poly(Ethylenedioxy Thiophene). Chemistry of Materials, 2016, 28, 6080-6088.	6.7	96
7	Elucidating the deprotonation of polyaniline films by X-ray photoelectron spectroscopy. Journal of Materials Chemistry C, 2015, 3, 7180-7186.	5.5	95
8	An erodible polythiophene-based composite for biomedical applications. Journal of Materials Chemistry, 2011, 21, 5555.	6.7	83
9	Photodynamic therapy with nanoparticles to combat microbial infection and resistance. Nanoscale, 2020, 12, 21034-21059.	5. 6	66
10	Emulsion-coaxial electrospinning: designing novel architectures for sustained release of highly soluble low molecular weight drugs. Journal of Materials Chemistry, 2012, 22, 11347.	6.7	59
11	Gecko-inspired chitosan adhesive for tissue repair. NPG Asia Materials, 2016, 8, e280-e280.	7.9	50
12	The effect of redox polymerisation on degradation and cell responses to poly (vinyl alcohol) hydrogels. Biomaterials, 2007, 28, 947-955.	11.4	49
13	Synthesis and Characterization of Radiopaque Iodine-containing Degradable PVA Hydrogels. Biomacromolecules, 2008, 9, 263-268.	5.4	46
14	Photochemical tissue bonding with chitosan adhesive films. BioMedical Engineering OnLine, 2010, 9, 47.	2.7	46
15	Green Synthesis of Lactoneâ€Based Conjugated Polymers for nâ€Type Organic Electrochemical Transistors. Advanced Functional Materials, 2022, 32, .	14.9	45
16	Conjugated Polymers in Bioelectronics: Addressing the Interface Challenge. Advanced Healthcare Materials, 2019, 8, e1900053.	7.6	44
17	Conductive Polymer Hydrogels. Springer Series on Polymer and Composite Materials, 2016, , 19-44.	0.7	42
18	Photoactive Organic Substrates for Cell Stimulation: Progress and Perspectives. Advanced Materials Technologies, 2019, 4, 1800744.	5.8	42

#	Article	IF	CITATIONS
19	Immunomodulatory properties of photopolymerizable fucoidan and carrageenans. Carbohydrate Polymers, 2020, 230, 115691.	10.2	40
20	Network structure and macromolecular drug release from poly(vinyl alcohol) hydrogels fabricated via two crosslinking strategies. International Journal of Pharmaceutics, 2009, 366, 31-37.	5.2	38
21	Singleâ€Material OECTâ€Based Flexible Complementary Circuits Featuring Polyaniline in Both Conducting Channels. Advanced Functional Materials, 2021, 31, 2007205.	14.9	33
22	3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications. Journal of Materials Chemistry B, 2021, 9, 6163-6175.	5.8	31
23	Lysozyme depolymerization of photo-activated chitosan adhesive films. Carbohydrate Polymers, 2015, 121, 56-63.	10.2	30
24	Diagnostic challenges in dielectric loss assessment and interpretation: a review. IET Science, Measurement and Technology, 2019, 13, 767-782.	1.6	30
25	All-Organic Semiconductors for Electrochemical Biosensors: An Overview of Recent Progress in Material Design. Frontiers in Bioengineering and Biotechnology, 2019, 7, 237.	4.1	30
26	An <i>in vitro</i> study of the photodynamic effect of rose bengal on <i>trichophyton rubrum</i> Journal of Biophotonics, 2014, 7, 410-417.	2.3	29
27	Advances in Hydrogels Applied to Degenerative Diseases. Current Pharmaceutical Design, 2012, 18, 2558-2575.	1.9	29
28	Laserâ€activated adhesive films for sutureless median nerve anastomosis. Journal of Biophotonics, 2013, 6, 938-949.	2.3	28
29	Elaboration of radiopaque iodinated nanoparticles for in situ control of local drug delivery. Biomaterials, 2009, 30, 5667-5674.	11.4	27
30	Tissue repair strength using chitosan adhesives with different physicalâ€chemical characteristics. Journal of Biophotonics, 2014, 7, 948-955.	2.3	27
31	Versatile Fabrication Approach of Conductive Hydrogels via Copolymerization with Vinyl Monomers. ACS Applied Materials & Diterfaces, 2017, 9, 44124-44133.	8.0	27
32	Porous chitosan adhesives with L-DOPA for enhanced photochemical tissue bonding. Acta Biomaterialia, 2020, 101, 314-326.	8.3	25
33	A flexible polyaniline-based bioelectronic patch. Biomaterials Science, 2018, 6, 493-500.	5.4	23
34	In vitro cell compatibility study of rose bengal–chitosan adhesives. Lasers in Surgery and Medicine, 2012, 44, 762-768.	2.1	21
35	Synthesis of Hetero-bifunctional, End-Capped Oligo-EDOT Derivatives. CheM, 2017, 2, 125-138.	11.7	21
36	Porous Chitosan Films Support Stem Cells and Facilitate Sutureless Tissue Repair. ACS Applied Materials & Discrete Repa	8.0	21

#	Article	IF	Citations
37	Stimulation and Repair of Peripheral Nerves Using Bioadhesive Graftâ€Antenna. Advanced Science, 2019, 6, 1801212.	11.2	20
38	Electrically Induced Disassembly of Electroactive Multilayer Films Fabricated from Water Soluble Polythiophenes. Advanced Functional Materials, 2012, 22, 5020-5027.	14.9	18
39	Light treatments of nail fungal infections. Journal of Biophotonics, 2018, 11, e201700350.	2.3	16
40	Drug-delivery study and estimation of polymer–solvent interaction parameter for bisacrylate ester-modified Pluronic hydrogels. International Journal of Pharmaceutics, 2008, 360, 231-235.	5.2	15
41	Soil Biodegradation of Unidirectional Polyhydroxybutyrate-Co-Valerate (PHBV) Biocomposites Toughened With Polybutylene-Adipate-Co-Terephthalate (PBAT) and Epoxidized Natural Rubber (ENR). Frontiers in Materials, 2019, 6, .	2.4	15
42	Fabrication and Application of Rose Bengal-chitosan Films in Laser Tissue Repair. Journal of Visualized Experiments, 2012, , .	0.3	14
43	Porous and sutureless bioelectronic patch with retained electronic properties under cyclic stretching. Applied Materials Today, 2019, 15, 315-322.	4.3	14
44	Synthesis and characterization of novel radiopaque poly(allyl amine) nanoparticles. Nanotechnology, 2010, 21, 335603.	2.6	12
45	Current Technologies Based on the Knowledge of the Stem Cells Microenvironments. Advances in Experimental Medicine and Biology, 2017, 1041, 245-262.	1.6	12
46	Conducting Polymer Hydrogels: A Single Component Conducting Polymer Hydrogel as a Scaffold for Tissue Engineering (Adv. Funct. Mater. 13/2012). Advanced Functional Materials, 2012, 22, 2691-2691.	14.9	10
47	A conjugated polymerâ€liposome complex: A contiguous waterâ€stable, electronic, and optical interface. View, 2021, 2, 20200081.	5.3	9
48	Molecular design of an electropolymerized copolymer with carboxylic and sulfonic acid functionalities. Synthetic Metals, 2022, 285, 117029.	3.9	8
49	Fabrication and characterization of chitosan nanoparticles using the coffeeâ€ r ing effect for photodynamic therapy. Lasers in Surgery and Medicine, 2022, 54, 758-766.	2.1	8
50	Semitransparent bandages based on chitosan and extracellular matrix for photochemical tissue bonding. BioMedical Engineering OnLine, 2018, 17, 7.	2.7	7
51	Genetic Tolerance to Rose Bengal Photodynamic Therapy and Antifungal Clinical Application for Onychomycosis. Advanced Therapeutics, 2019, 2, 1800105.	3.2	7
52	A Phosphonated Poly(ethylenedioxythiophene) Derivative with Low Oxidation Potential for Energy-Efficient Bioelectronic Devices. Chemistry of Materials, 2022, 34, 140-151.	6.7	7
53	Fucoidan- and carrageenan-based biosynthetic poly(vinyl alcohol) hydrogels for controlled permeation. Materials Science and Engineering C, 2021, 121, 111821.	7.3	6
54	Effect of cell culture media on photopolymerizations. Biomacromolecules, 2021, 22, 4295-4305.	5.4	5

#	Article	IF	Citations
55	Biofunctional conducting polymers: synthetic advances, challenges, and perspectives towards their use in implantable bioelectronic devices. Advances in Physics: X, 2021, 6, .	4.1	3
56	A One Step Procedure toward Conductive Suspensions of Liposomeâ€Polyaniline Complexes. Macromolecular Bioscience, 2020, 20, 2000103.	4.1	2
57	Impact of Sterilization on a Conjugated Polymer-Based Bioelectronic Patch. ACS Applied Polymer Materials, 2021, 3, 2541-2552.	4.4	2
58	Chitosan Adhesive Films for Photochemical Tissue Bonding. AIP Conference Proceedings, 2011, , .	0.4	1
59	A genome-wide screen for tolerance to rose bengal photodynamic therapy and its use in onychomycosis treatment. , 2019, , .		1
60	Chitosan-ECM bandages for photochemical tissue repair. , 2011, , .		0
61	Stimulation and repair of peripheral nerves using a bioadhesive graft-antenna (Conference) Tj ETQq1 1 0.78431	4 rgBT /O\	verlock 10 Tf