Kenneth J Fischer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5729194/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Internal Fluid Pressure on Stresses in Subchondral Bone Cysts of the Medial Femoral Condyle. Annals of Biomedical Engineering, 2022, 50, 86-93.	2.5	1
2	Novel insights into the fundamentals of palatal shelf elevation dynamics in normal mouse embryos. FASEB Journal, 2022, 36, .	0.5	0
3	A Modular MRI-Compatible Pipette Simulator to Evaluate How Design Effects the Basilar Thumb Joint Mechanics. Journal of Medical Devices, Transactions of the ASME, 2022, , .	0.7	1
4	The Key Pinch Stress Radiograph to Evaluate Dorsal Subluxation in the Basilar Thumb Joint. Journal of Biomechanical Engineering, 2021, 143, .	1.3	0
5	Impact of Size and Shape of Equine Femoral Subchondral Bone Cysts With a Transcondylar Screw on Predicted Bone Formation Area in a Finite Element Model. Journal of Biomechanical Engineering, 2020, 142, .	1.3	4
6	The Effect of the Joint Capsule and Anterior Oblique Ligament on Dorsal Subluxation of the First Metacarpal During Key Pinch. Journal of Biomechanical Engineering, 2020, 142, .	1.3	0
7	Impact of a void in the equine medial femoral condyle on bone stresses and peak contact pressures in a finite element model. Veterinary Surgery, 2019, 48, 237-246.	1.0	12
8	Analysis of how compliant layers and encapsulation affect power generated from piezoelectric stacked composites for bone healing medical devices. Journal of Biomedical Materials Research - Part A, 2019, 107, 2610-2618.	4.0	4
9	Stimulation of subchondral bone cyst healing by placement of a transcondylar screw in the equine medial femoral condyle. Veterinary Surgery, 2019, 48, 1194-1203.	1.0	19
10	EVALUATING THE EFFECT OF VARIOUS MENISCAL ATTACHMENTS AND MATERIAL PROPERTIES ON FEMORAL BONE STRESS. Journal of Musculoskeletal Research, 2018, 21, 1850003.	0.2	0
11	EFFECTS OF SCAPHOLUNATE LIGAMENT INJURY AND SURGICAL REPAIR ON WRIST CARTILAGE T2 RELAXATION TIME. Journal of Musculoskeletal Research, 2017, 20, 1750006.	0.2	0
12	The impact of subchondral bone cysts on local bone stresses in the medial femoral condyle of the equine stifle joint. Medical Engineering and Physics, 2017, 48, 158-167.	1.7	21
13	Evaluation of midcarpal capitate contact mechanics in normal, injured and post-operative wrists. Clinical Biomechanics, 2017, 47, 96-102.	1.2	2
14	Results of automatic image registration are dependent on initial manual registration. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 1856-1861.	1.6	0
15	Computationally Efficient Magnetic Resonance Imaging Based Surface Contact Modeling as a Tool to Evaluate Joint Injuries and Outcomes of Surgical Interventions Compared to Finite Element Modeling. Journal of Biomechanical Engineering, 2014, 136, .	1.3	11
16	Validation of radiocarpal joint contact models based on images from a clinical MRI scanner. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 378-387.	1.6	19
17	Effectiveness of surgical reconstruction to restore radiocarpal joint mechanics after scapholunate ligament injury: An in vivo modeling study. Journal of Biomechanics, 2013, 46, 1548-1553.	2.1	8
18	Scapholunate ligament injury adversely alters in vivo wrist joint mechanics: An MRIâ€based modeling study. Journal of Orthopaedic Research, 2013, 31, 1455-1460.	2.3	16

Kenneth J Fischer

#	Article	IF	CITATIONS
19	In Vivo Biomechanics of Thumb Carpometacarpal Joint: A Preliminary Study of Gender Differences. , 2013, , .		1
20	Stroke Rehabilitation Enhancement With DVD-Guided Visualization. , 2013, , .		0
21	Finite Element Analysis of In Vivo Radiocarpal Contact Mechanics Resulting From Scapholunate Ligament Injury. , 2012, , .		0
22	In Vivo Evaluation of Wrist Cartilage Integrity Using T2 Relaxation Time After Scapholunate Ligament Injury and Surgical Repair. , 2012, , .		0
23	MRI-Based Modeling for Radiocarpal Joint Mechanics: Validation Criteria and Results for Four Specimen-Specific Models. Journal of Biomechanical Engineering, 2011, 133, 101004.	1.3	13
24	In Vivo Contact Mechanics of the Distal Radioulnar Joint of the Normal Wrist Compared to Scapholunate Injury and Surgical Repair. , 2011, , .		0
25	Evaluation of Wrist Cartilage With and Without Scapholunate Ligament Injury in Pre and Post Operation Subjects. , 2011, , .		0
26	Effects of Surgical Repair or Reconstruction on Radiocarpal Mechanics From Wrists With Scapholunate Injury. , 2011, , .		0
27	Comparison of Normal Capitate Mid-Carpal Joint Mechanics With the Effects of Scapholunate Dissociation Injury. , 2011, , .		0
28	EFFECTS OF DIABETES AND EXERCISE ON SOFT CONNECTIVE TISSUE PROPERTIES AT THE KNEE IN THE RAT. Journal of Musculoskeletal Research, 2009, 12, 95-104.	0.2	1
29	PRELIMINARY VALIDATION OF MRI-BASED MODELING FOR EVALUATION OF JOINT MECHANICS. Journal of Musculoskeletal Research, 2008, 11, 161-171.	0.2	5
30	MRI-based modeling for evaluation of in vivo contact mechanics in the human wrist during active light grasp. Journal of Biomechanics, 2007, 40, 2781-2787.	2.1	28
31	Validation of MRI-Based Contact Modeling for Analysis of In Vivo Radiocarpal Mechanics. , 2007, , .		Ο
32	A contact algorithm for density-based load estimation. Journal of Biomechanics, 2006, 39, 636-644.	2.1	14
33	Mechanical evaluation of bone samples following alendronate therapy in healthy male dogs. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 76B, 143-148.	3.4	10
34	Density-based load estimation using two-dimensional finite element models: a parametric study. Computer Methods in Biomechanics and Biomedical Engineering, 2006, 9, 221-229.	1.6	5
35	Proximal Femoral Density Patterns are Consistent with Bicentric Joint Loads. Computer Methods in Biomechanics and Biomedical Engineering, 1999, 2, 271-283.	1.6	12
36	DENSITY-BASED LOAD ESTIMATION PREDICTS ALTERED FEMORAL LOAD DIRECTIONS FOR COXA VARA AND COXA VALGA. Journal of Musculoskeletal Research, 1999, 03, 83-92.	0.2	12

Kenneth J Fischer

#	Article	IF	CITATIONS
37	Bone Load Estimation for the Proximal Femur Using Single Energy Quantitative CT Data. Computer Methods in Biomechanics and Biomedical Engineering, 1998, 1, 233-245.	1.6	16
38	Observations of convergence and uniqueness of node-based bone remodeling simulations. Annals of Biomedical Engineering, 1997, 25, 261-268.	2.5	21
39	Computational method for determination of bone and joint loads using bone density distributions. Journal of Biomechanics, 1995, 28, 1127-1135.	2.1	56