List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5728684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Report of RILEM TC 281-CCC: outcomes of a round robin on the resistance to accelerated carbonation of Portland, Portland-fly ash and blast-furnace blended cements. Materials and Structures/Materiaux Et Constructions, 2022, 55, 99.	1.3	10
2	Fusion of phosphate by-products and glass waste for preparation of alkali-activated binders. Composites Part B: Engineering, 2022, 242, 110044.	5.9	5
3	Effect of Alkaline Salts on Calcium Sulfoaluminate Cement Hydration. Molecules, 2021, 26, 1938.	1.7	11
4	Sulfate-bearing clay and Pietra Serena sludge: Raw materials for the development of alkali activated binders. Construction and Building Materials, 2021, 301, 124030.	3.2	11
5	One-part hybrid cements from fly ash and electric arc furnace slag activated by sodium sulphate or sodium chloride. Journal of Building Engineering, 2021, 44, 103298.	1.6	13
6	Low-Calcium, Porous, Alkali-Activated Materials as Novel pH Stabilizers for Water Media. Minerals (Basel, Switzerland), 2020, 10, 935.	0.8	4
7	Effect of Alkali Concentration on the Activation of Carbonate-High Illite Clay. Applied Sciences (Switzerland), 2020, 10, 2203.	1.3	10
8	Recycling and Application of Mine Tailings in Alkali-Activated Cements and Mortars—Strength Development and Environmental Assessment. Applied Sciences (Switzerland), 2020, 10, 2084.	1.3	18
9	Effect of high temperatures on the mechanical behaviour of hybrid cement. Materiales De Construccion, 2020, 70, 213.	0.2	12
10	Hydration mechanisms of hybrid cements as a function of the way of addition of chemicals. Journal of the American Ceramic Society, 2019, 102, 427-436.	1.9	52
11	Mechanical-Chemical Activation of Coal Fly Ashes: An Effective Way for Recycling and Make Cementitious Materials. Frontiers in Materials, 2019, 6, .	1.2	32
12	Reuse of waste sandstone sludge via alkali activation in matrices of fly ash and metakaolin. Construction and Building Materials, 2018, 172, 212-223.	3.2	38
13	Stabilisation of construction and demolition waste with a high fines content using alkali activated fly ash. Construction and Building Materials, 2018, 170, 26-39.	3.2	67
14	Rheology of activated phosphorus slag with lime and alkaline salts. Cement and Concrete Research, 2018, 113, 121-129.	4.6	64
15	Hybrid Alkaline Cements: Bentonite-Opc Binders. Minerals (Basel, Switzerland), 2018, 8, 137.	0.8	12
16	C ₃ S and C ₂ S hydration in the presence of Na ₂ CO ₃ and Na ₂ SO ₄ . Journal of the American Ceramic Society, 2017, 100, 3188-3198.	1.9	48
17	Sustainable alkali activated materials: Precursor and activator derived from industrial wastes. Journal of Cleaner Production, 2017, 162, 1200-1209.	4.6	117
18	Recycling Industrial By-Products in Hybrid Cements: Mechanical and Microstructure Characterization. Waste and Biomass Valorization, 2017, 8, 1433-1440.	1.8	15

#	Article	IF	CITATIONS
19	The Effect of Heat Treatment on Alkali Activated Materials. Medziagotyra, 2017, 23, .	0.1	2
20	Hydration of Hybrid Alkaline Cement Containing a Very Large Proportion of Fly Ash: A Descriptive Model. Materials, 2016, 9, 605.	1.3	106
21	Alkaline Hydration Of C ₂ S and C ₃ S. Journal of the American Ceramic Society, 2016, 99, 604-611.	1.9	56
22	Characterisation of pre-industrial hybrid cement and effect of pre-curing temperature. Cement and Concrete Composites, 2016, 73, 281-288.	4.6	43
23	Manufacture of hybrid cements with fly ash and bottom ash from a municipal solid waste incinerator. Construction and Building Materials, 2016, 105, 218-226.	3.2	112
24	Mechanical behaviour at high temperature of alkali-activated aluminosilicates (geopolymers). Construction and Building Materials, 2015, 93, 1188-1196.	3.2	60
25	Advances in understanding alkali-activated materials. Cement and Concrete Research, 2015, 78, 110-125.	4.6	954
26	Specific Examples of Hybrid Alkaline Cement. MATEC Web of Conferences, 2014, 11, 01001.	0.1	12
27	Effect of temperature and alkaline concentration on metakaolin leaching kinetics. Ceramics International, 2014, 40, 8975-8985.	2.3	77
28	The Early Age Hydration Reactions of a Hybrid Cement Containing a Very High Content of Coal Bottom Ash. Journal of the American Ceramic Society, 2014, 97, 929-937.	1.9	37
29	High temperature resistance of a very high volume fly ash cement paste. Cement and Concrete Composites, 2014, 45, 234-242.	4.6	71
30	Alkaline activation of synthetic aluminosilicate glass. Ceramics International, 2014, 40, 5547-5558.	2.3	52
31	Binder Chemistry – Low-Calcium Alkali-Activated Materials. RILEM State-of-the-Art Reports, 2014, , 93-123.	0.3	23
32	Durability and Testing – Degradation via Mass Transport. RILEM State-of-the-Art Reports, 2014, , 223-276.	0.3	12
33	Alkali-activated blends of calcium aluminate cement and slag/diatomite. Ceramics International, 2013, 39, 9237-9245.	2.3	44
34	Clay reactivity: Production of alkali activated cements. Applied Clay Science, 2013, 73, 11-16.	2.6	87
35	Variation in hybrid cements over time. Alkaline activation of fly ash–portland cement blends. Cement and Concrete Research, 2013, 52, 112-122.	4.6	243
36	Hydration kinetics in hybrid binders: Early reaction stages. Cement and Concrete Composites, 2013, 39, 82-92.	4.6	152

#	Article	IF	CITATIONS
37	C4A3Å hydration in different alkaline media. Cement and Concrete Research, 2013, 46, 41-49.	4.6	74
38	Durability of very high volume fly ash cement pastes and mortars in aggressive solutions. Cement and Concrete Composites, 2013, 38, 12-20.	4.6	78
39	"Metakaolinâ€Slagâ€Clinker Blends.―The Role of Na ⁺ or K ⁺ as Alkaline Activators of Theses Ternary Blends. Journal of the American Ceramic Society, 2013, 96, 1991-1998.	1.9	41
40	Very High Volume Fly Ash Cements. Early Age Hydration Study Using <scp><scp>Na</scp></scp> ₂ <scp>SO</scp> 4 as an Activator. Journal of the American Ceramic Society, 2013, 96, 900-906.	1.9	125
41	Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates. Cement and Concrete Research, 2012, 42, 1242-1251.	4.6	139
42	<scp><scp>C</scp>a€"<scp><scp>S</scp>aꀓ<scp><scp>H</scp></scp> Cels: Interpretation of ²⁹<scp><scp>Si</scp><scp>MAS</scp>a€"<scp>Si</scp></scp> Si</scp>a€<scp>NMR</scp></scp> Si Outpatient of Signature and	1.9	31
43	Alkaline Hydration of Tricalcium Aluminate. Journal of the American Ceramic Society, 2012, 95, 3317-3324.	1.9	35
44	Effect of relative humidity on the reaction products of alkali activated fly ash. Journal of the European Ceramic Society, 2012, 32, 2799-2807.	2.8	58
45	An assessment of Mercury immobilisation in alkali activated fly ash (AAFA) cements. Journal of Hazardous Materials, 2012, 213-214, 207-215.	6.5	27
46	Effect of Sodium Silicate on Calcium Aluminate Cement Hydration in Highly Alkaline Media: A Microstructural Characterization. Journal of the American Ceramic Society, 2011, 94, 1297-1303.	1.9	51
47	New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 2011, 41, 750-763.	4.6	1,106
48	Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cement and Concrete Research, 2011, 41, 923-931.	4.6	837
49	Alkali activation of fly ash. Part III: Effect of curing conditions on reaction and its graphical description. Fuel, 2010, 89, 3185-3192.	3.4	139
50	Effect of sodium sulfate on the alkali activation of fly ash. Cement and Concrete Composites, 2010, 32, 589-594.	4.6	67
51	Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium. Cement and Concrete Research, 2010, 40, 27-32.	4.6	221
52	Effect of Calcium Additions on N–A–S–H Cementitious Gels. Journal of the American Ceramic Society, 2010, 93, 1934-1940.	1.9	196
53	Highâ€Temperature Resistance in Alkaliâ€Activated Cement. Journal of the American Ceramic Society, 2010, 93, 3411-3417.	1.9	74
54	Alkali activated fly ash: effect of admixtures on paste rheology. Rheologica Acta, 2009, 48, 447-455.	1.1	135

#	Article	IF	CITATIONS
55	Effect of alkalis on fresh C–S–H gels. FTIR analysis. Cement and Concrete Research, 2009, 39, 147-153.	4.6	508
56	FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H. Journal of Sol-Gel Science and Technology, 2008, 45, 63-72.	1.1	390
57	Alkaline activation of metakaolin–fly ash mixtures: Obtain of Zeoceramics and Zeocements. Microporous and Mesoporous Materials, 2008, 108, 41-49.	2.2	150
58	Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR Survey. Microporous and Mesoporous Materials, 2008, 109, 525-534.	2.2	200
59	Alkaline Activation of Blends of Metakaolin and Calcium Aluminate. Journal of the American Ceramic Society, 2008, 91, 1231-1236.	1.9	54
60	New Cementitious Materials Based on Alkaliâ€Activated Fly Ash: Performance at High Temperatures. Journal of the American Ceramic Society, 2008, 91, 3308-3314.	1.9	149
61	A study on the passive state stability of steel embedded in activated fly ash mortars. Corrosion Science, 2008, 50, 1058-1065.	3.0	122
62	Railway sleepers made of alkali activated fly ash concrete. Revista Ingenieria De Construccion, 2007, 22, .	0.4	49
63	Alkali–aggregate reaction in activated fly ash systems. Cement and Concrete Research, 2007, 37, 175-183.	4.6	203
64	An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cement and Concrete Research, 2007, 37, 671-679.	4.6	394
65	Alkali-activated fly ash: Effect of thermal curing conditions on mechanical and microstructural development – Part II. Fuel, 2007, 86, 315-322.	3.4	321
66	Alkali activation of fly ash: Effect of the SiO2/Na2O ratio. Microporous and Mesoporous Materials, 2007, 106, 180-191.	2.2	500
67	Synthesis and thermal behavior of different aluminosilicate gels. Journal of Non-Crystalline Solids, 2006, 352, 2061-2066.	1.5	38
68	Effect of Synthesis pH on the Preparation and Properties of K-Al-Bearing Silicate Gels from Solution. Journal of the Ceramic Society of Japan, 2006, 114, 624-629.	1.3	15
69	The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous and Mesoporous Materials, 2006, 91, 111-119.	2.2	444
70	Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity. Fuel, 2006, 85, 625-634.	3.4	224
71	Quantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reaction. Fuel, 2006, 85, 1960-1969.	3.4	181
72	Fly Ash Based Geocements: Genesis of Microstructure and Properties at Hydration-Dehydration Process. , 2006, , 55-64.		0

#	Article	IF	CITATIONS
73	Properties of alkali-activated fly ashes determined from rheological measurements. Advances in Cement Research, 2005, 17, 143-151.	0.7	51
74	Immobilization of cesium in alkaline activated fly ash matrix. Journal of Nuclear Materials, 2005, 346, 185-193.	1.3	87
75	Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products. Fuel, 2005, 84, 2048-2054.	3.4	456
76	Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Microporous and Mesoporous Materials, 2005, 86, 207-214.	2.2	452
77	Corrosion resistance in activated fly ash mortars. Cement and Concrete Research, 2005, 35, 1210-1217.	4.6	147
78	Microstructure development of alkali-activated fly ash cement: a descriptive model. Cement and Concrete Research, 2005, 35, 1204-1209.	4.6	601
79	Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cement and Concrete Research, 2005, 35, 1984-1992.	4.6	788
80	Fixing Arsenic in Alkali-Activated Cementitious Matrices. Journal of the American Ceramic Society, 2005, 88, 1122-1126.	1.9	57
81	Alkaline Activation of Fly Ashes: NMR Study of the Reaction Products. Journal of the American Ceramic Society, 2004, 87, 1141-1145.	1.9	368
82	Microstructural characterisation of alkali-activated PFA matrices for waste immobilisation. Cement and Concrete Composites, 2004, 26, 1001-1006.	4.6	42
83	"Geopolimeros": una única base quÃmica y diferentes microestructuras. Materiales De Construccion, 2004, 54, 77-91.	0.2	57
84	Alkali-activated cementitous materials: Alternative matrices for the immobilisation of hazardous wastes. Cement and Concrete Research, 2003, 33, 281-288.	4.6	132
85	Alkali-activated cementitious materials: Alternative matrices for the immobilisation of hazardous wastes. Cement and Concrete Research, 2003, 33, 289-295.	4.6	169
86	Characterisation of fly ashes. Potential reactivity as alkaline cementsâ~†. Fuel, 2003, 82, 2259-2265.	3.4	541
87	Effect of superplasticisers on the behaviour and properties of alkaline cements. Advances in Cement Research, 2003, 15, 23-28.	0.7	59
88	Alkaline Activation of Metakaolin: Effect of Calcium Hydroxide in the Products of Reaction. Journal of the American Ceramic Society, 2002, 85, 225-231.	1.9	258
89	Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio. Materials Letters, 2001, 47, 55-62.	1.3	400
90	Calorimetric study of alkaline activation of calcium hydroxide–metakaolin solid mixtures. Cement and Concrete Research, 2001, 31, 25-30.	4.6	273

#	Article	IF	CITATIONS
91	Microstructure studies on Portland cement pastes obtained in highly alkaline environments. Cement and Concrete Research, 2001, 31, 1581-1585.	4.6	35
92	Alkali-activated fly ashes. Cement and Concrete Research, 1999, 29, 1323-1329.	4.6	1,765
93	Chemical stability of cementitious materials based on metakaolin. Cement and Concrete Research, 1999, 29, 997-1004.	4.6	476