
Gregorio Bottaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/572843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Magnetic Field Magneto-optics on Plasmonic Silica-Embedded Silver Nanoparticles. Journal of Physical Chemistry C, 2022, 126, 1939-1945.	3.1	10
2	Adaptive helicity and chiral recognition in bright europium quadruple-stranded helicates induced by host-guest interaction. Cell Reports Physical Science, 2022, 3, 100692.	5.6	27
3	Stoichiometrically Controlled Assembly of Lanthanide Molecular Complexes of the Heteroditopic Divergent Ligand 4′-(4-Pyridyl)-2,2′:6′,2″-terpyridine <i>N</i> Oxide in Hypodentate or Bridging Coordination Modes. Structural, Magnetic, and Photoluminescence Studies. Inorganic Chemistry, 2022, 61, 265-278.	4.0	8
4	Dinuclear gold(I) Complexes with Bidentate NHC Ligands as Precursors for Alkynyl Complexes via Mechanochemistry. Molecules, 2022, 27, 4317.	3.8	3
5	Multireference <i>Ab Initio</i> Investigation on Ground and Low-Lying Excited States: Systematic Evaluation of <i>J</i> – <i>J</i> Mixing in a Eu ³⁺ Luminescent Complex. Inorganic Chemistry, 2021, 60, 315-324.	4.0	11
6	Electronic and relating behavior of Mn-doped ZnO nanostructures: An x-ray absorption spectroscopy study. AIP Advances, 2021, 11, 065027.	1.3	1
7	Copper single-atoms embedded in 2D graphitic carbon nitride for the CO2 reduction. Npj 2D Materials and Applications, 2021, 5, .	7.9	54
8	Nature of the Ligand-Centered Triplet State in Gd3+ β-Diketonate Complexes as Revealed by Time-Resolved EPR Spectroscopy and DFT Calculations. Inorganic Chemistry, 2021, 60, 15141-15150.	4.0	4
9	1D-Zigzag Eu3+/Tb3+ Coordination Chains as Luminescent Ratiometric Thermometers Endowed with Multicolor Emission. Materials, 2021, 14, 6445.	2.9	5
10	Luminescent Thermometers: From a Library of Europium(III) βâ€Điketonates to a General Model for Predicting the Thermometric Behaviour of Europiumâ€Based Coordination Systems. ChemPhotoChem, 2020, 4, 674-684.	3.0	12
11	Antenna triplet DFT calculations to drive the design of luminescent Ln ³⁺ complexes. Dalton Transactions, 2020, 49, 14556-14563.	3.3	7
12	Luminescent Thermometers: From a Library of Europium(III) βâ€Diketonates to a General Model for Predicting the Thermometric Behaviour of Europiumâ€Based Coordination Systems. ChemPhotoChem, 2020, 4, 646.	3.0	0
13	Composition–Thermometric Properties Correlations in Homodinuclear Eu ³⁺ Luminescent Complexes. Inorganic Chemistry, 2020, 59, 18156-18167.	4.0	14
14	Single-crystal-to-single-crystal post-synthetic modifications of three-dimensional LOFs (Ln = Gd, Eu): a way to modulate their luminescence and thermometric properties. Dalton Transactions, 2020, 49, 6030-6042.	3.3	21
15	Opto-Microfluidic System for Absorbance Measurements in Lithium Niobate Device Applied to pH Measurements. Sensors, 2020, 20, 5366.	3.8	12
16	Possible Synthetic Approaches for Heterobimetallic Complexes by Using nNHC/tzNHC Heteroditopic Carbene Ligands. Molecules, 2019, 24, 2305.	3.8	8
17	Effect of Coordinating Solvents on the Structure of Cu(II)-4,4′-bipyridine Coordination Polymers. Inorganics, 2019, 7, 103.	2.7	8
18	Ferroelectric order driven Eu3+ photoluminescence in BaZrxTi1â^'xO3 perovskite. Scientific Reports, 2019, 9, 6441.	3.3	20

#	Article	IF	CITATIONS
19	Luminescent sequence-dependent materials through a step by step assembly of RE ¹ –1,4-benzendicarboxylate–RE ² (RE ^x = Y ³⁺ ,) Tj ETQ Chemistry C, 2019, 7, 4415-4423.	q1 <u>1</u> 0.78	4314 rgBT /0
20	Structural and Luminescent Properties of Homoleptic Silver(I), Gold(I), and Palladium(II) Complexes with <i>n</i> NHC- <i>tz</i> NHC Heteroditopic Carbene Ligands. ACS Omega, 2019, 4, 4192-4205.	3.5	18
21	A film-forming graphene/diketopyrrolopyrrole covalent hybrid with far-red optical features: Evidence of photo-stability. Synthetic Metals, 2019, 258, 116201.	3.9	7
22	Homodinuclear Lanthanide Complexes with the Divergent Heterotopic 4,4′â€Bipyridine <i>N</i> â€Oxide (bipyMO) Ligand. European Journal of Inorganic Chemistry, 2018, 2018, 4421-4428.	2.0	11
23	1D hetero-bimetallic regularly alternated 4f–3d coordination polymers based on <i>N</i> -oxide-4,4′-bipyridine (bipyMO) as a linker: photoluminescence and magnetic properties. Dalton Transactions, 2018, 47, 8337-8345.	3.3	11
24	From Blue to Green: Fine-Tuning of Photoluminescence and Electrochemiluminescence in Bifunctional Organic Dyes. Journal of the American Chemical Society, 2017, 139, 2060-2069.	13.7	73
25	Circularly Polarized Luminescence of Silica-Grafted Europium Chiral Derivatives Prepared through a Sequential Functionalization. Inorganic Chemistry, 2017, 56, 7010-7018.	4.0	28
26	Easy but not straightforward: base and solvent effect on the synthesis of luminescent europium 1,3-di(thien-2-yl)propane-1,3-dionate coordination complexes. Canadian Journal of Chemistry, 2017, 95, 1183-1190.	1.1	5
27	Hampered Subcomponent Self-Assembly Leads to an Aminal Ligand: Reactivity with Silver(I) and Copper(II). European Journal of Inorganic Chemistry, 2017, 2017, 30-34.	2.0	6
28	Bi ₁₂ O ₁₇ Cl ₂ /(BiO) ₂ CO ₃ Nanocomposite Materials for Pollutant Adsorption and Degradation: Modulation of the Functional Properties by Composition Tailoring. ACS Omega, 2017, 2, 6298-6308.	3.5	24
29	A convenient synthesis of highly luminescent lanthanide 1D-zigzag coordination chains based only on 4,4′-bipyridine as connector. Polyhedron, 2016, 119, 371-376.	2.2	18
30	The Role of Ligand Topology in the Decomplexation of Luminescent Lanthanide Complexes by Dipicolinic Acid. ChemPhysChem, 2016, 17, 3229-3236.	2.1	2
31	Smart Grafting of Lanthanides onto Silica via <i>N</i> , <i>N</i> Dialkylcarbamato Complexes. Inorganic Chemistry, 2016, 55, 939-947.	4.0	24
32	Folic Acid-Conjugated Europium Complexes as Luminescent Probes for Selective Targeting of Cancer Cells. Journal of Medicinal Chemistry, 2015, 58, 2003-2014.	6.4	36
33	Ag+↔Na+ ion exchanged silicate glasses for solar cells covering: Down-shifting properties. Ceramics International, 2015, 41, 7221-7226.	4.8	32
34	From lanthanide chlorides to lanthanide pentafluorophenolates via lanthanide N,N-dialkylcarbamates. Polyhedron, 2015, 85, 770-776.	2.2	5
35	Efficient Luminescence from Fluorene―and Spirobifluoreneâ€Based Lanthanide Complexes upon Nearâ€Visible Irradiation. Chemistry - A European Journal, 2014, 20, 4598-4607.	3.3	15
36	Preparation of <i><i>N,N</i></i> -Dialkylcarbamato Lanthanide Complexes by Extraction of Lanthanide Ions from Aqueous Solution into Hydrocarbons. Inorganic Chemistry, 2014, 53, 4861-4871.	4.0	17

Gregorio Bottaro

#	Article	IF	CITATIONS
37	Bismuth oxychloride nanoflakes: Interplay between composition-structure and optical properties. Dalton Transactions, 2012, 41, 5480.	3.3	73
38	Synthesis and photophysical characterization of highly luminescent silica films doped with substituted 2-hydroxyphthalamide (IAM) terbium complexes. Dalton Transactions, 2011, 40, 11530.	3.3	12
39	Proteins conjugation with ZnO sol–gel nanopowders. Journal of Sol-Gel Science and Technology, 2011, 60, 352-358.	2.4	11
40	White Luminescent Silica Layers: The Molecular Design Beneath. ChemPhysChem, 2010, 11, 2499-2502.	2.1	13
41	Design of luminescent lanthanide complexes: From molecules to highly efficient photo-emitting materials. Coordination Chemistry Reviews, 2010, 254, 487-505.	18.8	848
42	Reply to "Luminescent lanthanide complexes: Selection rules and design― Coordination Chemistry Reviews, 2010, 254, 3029.	18.8	4
43	Rational Design of Ag/TiO ₂ Nanosystems by a Combined RFâ€Sputtering/Solâ€Gel Approach. ChemPhysChem, 2009, 10, 3249-3259.	2.1	62
44	Luminescent Properties of Eu-Doped Lanthanum Oxyfluoride Solâ^'Gel Thin Films. Journal of Physical Chemistry C, 2009, 113, 14429-14434.	3.1	44
45	Microstructural and Optical Properties Modifications Induced by Plasma and Annealing Treatments of Lanthanum Oxide Solâ^'Gel Thin Films. Journal of Physical Chemistry C, 2009, 113, 2911-2918.	3.1	20
46	Highly Photoluminescent Silica Layers Doped with Efficient Eu(III) and Tb(III) Antenna Complexes. Chemistry of Materials, 2009, 21, 2941-2949.	6.7	27
47	Innovative metal oxide-based substrates for DNA microarrays. Inorganica Chimica Acta, 2008, 361, 3603-3608.	2.4	13
48	A versatile single-source precursor for the synthesis of LaCoO3 films. Materials Letters, 2008, 62, 1179-1182.	2.6	3
49	Structureâ^ Luminescence Correlations in Europium-Doped Solâ^ Gel ZnO Nanopowders. Journal of Physical Chemistry C, 2008, 112, 4049-4054.	3.1	120
50	Lanthanum Oxyfluoride Solâ^'gel Thin Films by a Simple Single-Source Precursor Route. Journal of Physical Chemistry C, 2008, 112, 14508-14512.	3.1	18
51	Synthesis and structural evolution of mesoporous silica–silver nanocomposites. Nanotechnology, 2007, 18, 155606.	2.6	15
52	Photophysical properties and tunable colour changes of silica single layers doped with lanthanide(iii) complexes. Chemical Communications, 2007, , 2911.	4.1	58
53	Photocatalytic and antibacterial activity of TiO ₂ and Au/TiO ₂ nanosystems. Nanotechnology, 2007, 18, 375709.	2.6	197
54	Molecular photochromic systems: a theoretical and experimental investigation on zinc(II) dithizonate. Applied Organometallic Chemistry, 2007, 21, 246-254.	3.5	2

Gregorio Bottaro

#	Article	IF	CITATIONS
55	Functional Metal Oxide Nanosystems by a Hybrid CVD/Sol–Gel Approach. Chemical Vapor Deposition, 2007, 13, 112-117.	1.3	7
56	Polymerization processes in Al(OBus)3 sol-gel solutions: an investigation by laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2006, 20, 2681-2688.	1.5	2
57	Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look. Coordination Chemistry Reviews, 2006, 250, 1294-1314.	18.8	185
58	Highly homogeneous, transparent and luminescent SiO2glassy layers containing a covalently bound tetraazacyclododecane–triacetic acid–Eu(iii)–acetophenone complex. Journal of Materials Chemistry, 2006, 16, 741-747.	6.7	27
59	Structural and Magnetic Properties of Pure and Ca-Doped LaCoO ₃ Nanopowders Obtained by a Sol–Gel Route. Journal of Nanoscience and Nanotechnology, 2006, 6, 1060-1067.	0.9	15
60	ZnO:Er(III) Nanosystems Analyzed by XPS. Surface Science Spectra, 2006, 13, 9-16.	1.3	9
61	Tailored synthesis of ZnO:Er(III) nanosystems by a hybrid rf-sputtering/sol-gel route. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 1941-1947.	2.1	17
62	RF-sputtering of gold on silica surfaces: Evolution from clusters to continuous films. Materials Science and Engineering C, 2005, 25, 599-603.	7.3	34
63	Sol–gel synthesis and characterization of lamellar mesostructured titania films. Materials Science and Engineering C, 2005, 25, 560-564.	7.3	8
64	LaCoO ₃ Nanosystems by a Hybrid CVD/Sol–Gel Approach. Journal of Nanoscience and Nanotechnology, 2005, 5, 781-785.	0.9	9
65	Optical and electrical properties of nanostructured LaCoO3 thin films. Applied Physics Letters, 2005, 87, 061909.	3.3	15
66	Structural evolution and effects of calcium doping on nanophasic LaCoO3 powders prepared by non-alkoxidic sol–gel technique. Journal of Materials Chemistry, 2005, 15, 2020.	6.7	10
67	Hybrid Chemical Vapor Deposition/Solâ^'Gel Route in the Preparation of Nanophasic LaCoO3 Films. Chemistry of Materials, 2005, 17, 427-433.	6.7	31
68	Copperâ^'Silica Nanocomposites Tailored by the Solâ^'Gel Route. Chemistry of Materials, 2005, 17, 1450-1456.	6.7	27
69	Pure and Ca-doped LaCoO3 Nanopowders: Sol-Gel Synthesis, Characterization and Magnetic Properties. Materials Research Society Symposia Proceedings, 2004, 848, 480.	0.1	0
70	Au/TiO2Nanosystems:Â A Combined RF-Sputtering/Solâ^'Gel Approach. Chemistry of Materials, 2004, 16, 3331-3338.	6.7	71
71	Silica-Supported Erbium-based Nanosystems: An XPS Characterization. Surface Science Spectra, 2004, 11, 26-32.	1.3	8
72	Innovative Approaches to Oxide Nanosystems: CeO2-ZrO2 Nanocomposites by a Combined PE-CVD/Sol-Gel Route. Chemical Vapor Deposition, 2004, 10, 257-264.	1.3	23

GREGORIO BOTTARO

#	Article	IF	CITATIONS
73	Composition/Structure Relationships in Monolithic Borophosphosilicate Glasses Obtained by the Solâ^ Gel Route. Chemistry of Materials, 2004, 16, 315-320.	6.7	11
74	Sol-gel synthesis of silica–based mesoporous powders. Materials Research Society Symposia Proceedings, 2004, 848, 102.	0.1	0
75	Introduction to XPS Studies of Metal and Metal-oxide Nanosystems. Surface Science Spectra, 2003, 10, 137-142.	1.3	18
76	Au Nanoparticles Supported on HOPG: An XPS Characterization. Surface Science Spectra, 2003, 10, 164-169.	1.3	2
77	Study of Ag/SiO2 Nanosystems by XPS. Surface Science Spectra, 2003, 10, 170-181.	1.3	12
78	A sol–gel approach to nanophasic copper oxide thin films. Thin Solid Films, 2003, 442, 48-52.	1.8	188
79	Transition metal oxide-doped mesostructured silica films. Applied Catalysis A: General, 2003, 254, 297-310.	4.3	21
80	Characterization of AU/TIO2 Nanocomposites by XPS. Surface Science Spectra, 2003, 10, 1-7.	1.3	17
81	Boron and Phosphorus Quantification in Sol-Gel BPSG Glasses by XPS. Surface Science Spectra, 2003, 10, 40-46.	1.3	5
82	LaCoO3 Nanosystems by a Hybrid CVD/Sol-Gel Route: An XPS Investigation. Surface Science Spectra, 2003, 10, 143-149.	1.3	11
83	ZrO2-CeO2 Sol-Gel Thin Films by XPS. Surface Science Spectra, 2003, 10, 32-39.	1.3	3
84	Structural characterization of sol-gel lanthanum cobaltite thin films. Crystal Engineering, 2002, 5, 291-298.	0.7	22
85	Synthesis and characterization of nanophasic LaCoO3 powders. Surface and Interface Analysis, 2002, 34, 112-115.	1.8	38
86	LaCoO3 Nanopowders by XPS. Surface Science Spectra, 2001, 8, 24-31.	1.3	22
87	ZrO2 Sol-Gel Thin Films by XPS. Surface Science Spectra, 2001, 8, 268-273.	1.3	8
88	Plasma-Enhanced CVD CeO2 Nanocrystalline Thin Films Analyzed by XPS. Surface Science Spectra, 2001, 8, 247-257.	1.3	43
89	Silver(I) and gold(I) complexes with bitriazoleâ€based Nâ€heterocyclic carbene ligand: Solid state features and behaviour in solution. Applied Organometallic Chemistry, 0, , .	3.5	1