Jasmin Shah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5728270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simultaneous Removal and Extraction of Bisphenol A and 4-tert-butylphenol From Water Samples Using Magnetic Chitosan Particles. Frontiers in Materials, 2022, 9, .	2.4	6
2	Recovery of cobalt from spent lithium ion batteries utilizing surface modified graphene oxide. Hydrometallurgy, 2022, 213, 105911.	4.3	3
3	Recovery of critical metals from leach solution of electronic waste using magnetite electrospun carbon nanofibres composite. Environmental Science and Pollution Research, 2022, 29, 88763-88778.	5.3	3
4	Removal of Bisphenol-A from Aqueous Samples Using Graphene Oxide Assimilated Magnetic Silica Polyaniline Composite. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 2073-2082.	3.7	10
5	Recovery of cadmium, lead and nickel from leach solutions of waste electrical and electronic equipment using activated carbon modified with 1-(2-pyridylazo)-2-naphthol. Hydrometallurgy, 2021, 201, 105570.	4.3	7
6	Dispersive Solid Phase Microextraction of Fenoxaprop-p-ethyl Herbicide from Water and Food Samples Using Magnetic Graphene Composite. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1716-1725.	3.7	8
7	Dispersive solid phase extraction of precious metal ions from electronic wastes using magnetic multiwalled carbon nanotubes composite. Minerals Engineering, 2020, 154, 106414.	4.3	21
8	Eco-friendly alginate encapsulated magnetic graphene oxide beads for solid phase microextraction of endocrine disrupting compounds from water samples. Ecotoxicology and Environmental Safety, 2020, 190, 110099.	6.0	31
9	Microextraction of Selected Endocrine Disrupting Phenolic Compounds using Magnetic Chitosan Biopolymer Graphene Oxide Nanocomposite. Journal of Polymers and the Environment, 2020, 28, 1673-1683.	5.0	19
10	Magnetic chitosan graphene oxide composite for solid phase extraction of phenylurea herbicides. Carbohydrate Polymers, 2018, 199, 461-472.	10.2	73
11	Removal and Extraction of Para-Nitrophenol from Aqueous Samples Using Graphene Magnetic Nanocomposite. Arabian Journal for Science and Engineering, 2017, 42, 4465-4472.	3.0	10
12	Magnetic particles precipitated onto wheat husk for removal of methyl blue from aqueous solution. Toxicological and Environmental Chemistry, 2014, 96, 218-226.	1.2	31
13	Preconcentration and determination of Cu (II) from aqueous samples using functionalized sawdust and comparison with synthetic functionalized sorbents. Korean Journal of Chemical Engineering, 2013, 30, 706-713.	2.7	7
14	Biopolymer Magnetic Chitosan Graphene Oxide Composite for Removal and Extraction of Aromatic Amines from Aqueous Samples. Journal of Chemical Technology and Biotechnology, 0, , .	3.2	0