Amber L Doiron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5728136/publications.pdf

Version: 2024-02-01

687335 752679 25 597 13 20 citations h-index g-index papers 25 25 25 1235 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gold Nanoparticles as X-Ray, CT, and Multimodal Imaging Contrast Agents: Formulation, Targeting, and Methodology. Journal of Nanomaterials, 2018, 2018, 1-15.	2.7	94
2	Recent developments in the use of nanoparticles for treatment of biofilms. Nanotechnology Reviews, 2017, 6, 383-404.	5.8	71
3	Poly(Lactic-co-Glycolic) Acid as a Carrier for Imaging Contrast Agents. Pharmaceutical Research, 2009, 26, 674-682.	3.5	63
4	Pyruvate-depleting conditions induce biofilm dispersion and enhance the efficacy of antibiotics in killing biofilms in vitro and in vivo. Scientific Reports, 2019, 9, 3763.	3.3	56
5	Preparation and initial characterization of biodegradable particles containing gadolinium-DTPA contrast agent for enhanced MRI. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17232-17237.	7.1	51
6	Nanoparticle localization in blood vessels: dependence on fluid shear stress, flow disturbances, and flow-induced changes in endothelial physiology. Nanoscale, 2018, 10, 15249-15261.	5.6	50
7	Endothelial nanoparticle binding kinetics are matrix and size dependent. Biotechnology and Bioengineering, 2011, 108, 2988-2998.	3.3	35
8	Nanoparticle size-specific actin rearrangement and barrier dysfunction of endothelial cells. Nanotoxicology, 2017, 11, 846-856.	3.0	27
9	Nanoparticle Accumulation in Angiogenic Tissues: Towards Predictable Pharmacokinetics. Small, 2013, 9, 3118-3127.	10.0	26
10	Endothelial barrier dysfunction induced by nanoparticle exposure through actin remodeling via caveolae/raft-regulated calcium signalling. NanoImpact, 2018, 11, 82-91.	4.5	22
11	Non-ionising UV light increases the optical density of hygroscopic self assembled DNA crystal films. Scientific Reports, 2017, 7, 6631.	3.3	20
12	Enzyme-encapsulating polymeric nanoparticles: A potential adjunctive therapy in Pseudomonas aeruginosa biofilm-associated infection treatment. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110512.	5.0	19
13	Activatable interpolymer complex-superparamagnetic iron oxide nanoparticles as magnetic resonance contrast agents sensitive to oxidative stress. Colloids and Surfaces B: Biointerfaces, 2017, 158, 578-588.	5.0	18
14	Controlled Release and Nanotechnology. , 2009, , 283-312.		10
15	Near Infrared-Activated Dye-Linked ZnO Nanoparticles Release Reactive Oxygen Species for Potential Use in Photodynamic Therapy. Materials, 2020, 13, 17.	2.9	8
16	Activatable superparamagnetic iron oxide nanoparticles scavenge reactive oxygen species in macrophages and endothelial cells. RSC Advances, 2020, 10, 41305-41314.	3.6	8
17	Surface characterization of nanoparticles using near-field light scattering. Beilstein Journal of Nanotechnology, 2018, 9, 1228-1238.	2.8	6
18	TGF-beta and TNF-a affect cell surface proteoglycan and sialic acid expression on vascular endothelial cells. Biomedical Sciences Instrumentation, 2004, 40, 331-6.	0.2	6

#	Article	IF	CITATIONS
19	Design of core–shell goldâ€coated superparamagnetic nanoparticles as a theranostic for targeted magnetic resonance imaging and photoablation therapy. Micro and Nano Letters, 2019, 14, 1187-1191.	1.3	4
20	Activatable Nanoparticles: Recent Advances in Redox-Sensitive Magnetic Resonance Contrast Agent Candidates Capable of Detecting Inflammation. Pharmaceuticals, 2021, 14, 69.	3.8	2
21	A human cell model for dynamic testing of MR contrast agents. BioTechniques, 2011, 50, 120-123.	1.8	1
22	Pharmacokinetics: Nanoparticle Accumulation in Angiogenic Tissues: Towards Predictable Pharmacokinetics (Small 18/2013). Small, 2013, 9, 3006-3006.	10.0	0
23	Towards safer nanomaterials: Investigating endothelial cell mechanical properties and barrier function., 2015,,.		0
24	Enzyme loaded poly(lactic-co-glycolic acid) nanoparticles as anti-biofilm treatment strategy for chronic biofilm infections. , $2015, , .$		0
25	WIP: A Vertically-integrated, Project-focused Approach to Undergraduate Biomedical Engineering Education., 0,,.		0