
Fabio Salvatore Palumbo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/572807/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Composite Hydrogels of Alkyl Functionalized Gellan Gum Derivative and Hydroxyapatite/Tricalcium Phosphate Nanoparticles as Injectable Scaffolds for bone Regeneration. Macromolecular Bioscience, 2022, 22, e2100290.	4.1	5
2	Bioactive Scaffolds Based on Amine-Functionalized Gellan Gum for the Osteogenic Differentiation of Gingival Mesenchymal Stem Cells. ACS Applied Polymer Materials, 2022, 4, 1805-1815.	4.4	1
3	Correlating Rheological Properties of a Gellan Gum-Based Bioink: A Study of the Impact of Cell Density. Polymers, 2022, 14, 1844.	4.5	6
4	Photothermal nanofibrillar membrane based on hyaluronic acid and graphene oxide to treat Staphylococcus aureus and Pseudomonas aeruginosa infected wounds. International Journal of Biological Macromolecules, 2022, 214, 470-479.	7.5	15
5	Fabrication of silver nanoparticles by a diethylene triamine-hyaluronic acid derivative and use as antibacterial coating. Carbohydrate Polymers, 2022, 295, 119861.	10.2	10
6	Hyaluronan alkyl derivatives-based electrospun membranes for potential guided bone regeneration: Fabrication, characterization and in vitro osteoinductive properties. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111438.	5.0	14
7	An asymmetric electrospun membrane for the controlled release of ciprofloxacin and FGF-2: Evaluation of antimicrobial and chemoattractant properties. Materials Science and Engineering C, 2021, 123, 112001.	7.3	18
8	Physicochemical and Rheological Characterization of Different Low Molecular Weight Gellan Gum Products and Derived Ionotropic Crosslinked Hydrogels. Gels, 2021, 7, 62.	4.5	20
9	Ciprofloxacin releasing gellan gum/polydopamine based hydrogels with near infrared activated photothermal properties. International Journal of Pharmaceutics, 2021, 610, 121231.	5.2	14
10	Gellan gum-based delivery systems of therapeutic agents and cells. Carbohydrate Polymers, 2020, 229, 115430.	10.2	89
11	Hyaluronic acid based nanohydrogels fabricated by microfluidics for the potential targeted release of Imatinib: Characterization and preliminary evaluation of the antiangiogenic effect. International Journal of Pharmaceutics, 2020, 573, 118851.	5.2	8
12	New gellan gum-graft-poly(d,l-lactide-co-glycolide) copolymers as promising bioinks: Synthesis and characterization. International Journal of Biological Macromolecules, 2020, 162, 1653-1667.	7.5	13
13	Production and physicochemical characterization of a new amine derivative of gellan gum and rheological study of derived hydrogels. Carbohydrate Polymers, 2020, 236, 116033.	10.2	24
14	Blend scaffolds with polyaspartamide/polyester structure fabricated via TIPS and their RGDC functionalization to promote osteoblast adhesion and proliferation. Journal of Biomedical Materials Research - Part A, 2019, 107, 2726-2735.	4.0	2
15	Mucoadhesive PEGylated inulin-based self-assembling nanoparticles: InÂvitro and exÂvivo transcorneal permeation enhancement of corticosteroids. Journal of Drug Delivery Science and Technology, 2019, 49, 195-208.	3.0	25
16	Synthesis and evaluation of thermo-rheological behaviour and ionotropic crosslinking of new gellan gum-alkyl derivatives. Carbohydrate Polymers, 2018, 185, 73-84.	10.2	27
17	Multifibrillar bundles of a self-assembling hyaluronic acid derivative obtained through a microfluidic technique for aortic smooth muscle cell orientation and differentiation. Biomaterials Science, 2018, 6, 2518-2526.	5.4	9
18	Hyaluronic acid and α-elastin based hydrogel for three dimensional culture of vascular endothelial cells. Journal of Drug Delivery Science and Technology, 2018, 46, 28-33.	3.0	16

#	Article	IF	CITATIONS
19	Spray dried hyaluronic acid microparticles for adhesion controlled aggregation and potential stimulation of stem cells. International Journal of Pharmaceutics, 2017, 519, 332-342.	5.2	12
20	Hyaluronic acid and beta cyclodextrins films for the release of corneal epithelial cells and dexamethasone. Carbohydrate Polymers, 2017, 166, 281-290.	10.2	39
21	Synthesis, mechanical and thermal rheological properties of new gellan gum derivatives. International Journal of Biological Macromolecules, 2017, 98, 646-653.	7.5	40
22	Double-Network-Structured Graphene Oxide-Containing Nanogels as Photothermal Agents for the Treatment of Colorectal Cancer. Biomacromolecules, 2017, 18, 1010-1018.	5.4	61
23	Microfluidic Fabrication of Physically Assembled Nanogels and Micrometric Fibers by Using a Hyaluronic Acid Derivative. Macromolecular Materials and Engineering, 2017, 302, 1700265.	3.6	10
24	Hyaluronic Acidâ€Based Micelles as Ocular Platform to Modulate the Loading, Release, and Corneal Permeation of Corticosteroids. Macromolecular Bioscience, 2017, 17, 1700261.	4.1	35
25	Microfluidic production of hyaluronic acid derivative microfibers to control drug release. Materials Letters, 2016, 182, 309-313.	2.6	19
26	Hyaluronic Acid Derivative with Improved Versatility for Processing and Biological Functionalization. Macromolecular Bioscience, 2016, 16, 1485-1496.	4.1	20
27	Modulation of physical and biological properties of a composite PLLA and polyaspartamide derivative obtained via thermally induced phase separation (TIPS) technique. Materials Science and Engineering C, 2016, 67, 561-569.	7.3	16
28	Uptake of silica covered Quantum Dots into living cells: Long term vitality and morphology study on hyaluronic acid biomaterials. Materials Science and Engineering C, 2016, 67, 231-236.	7.3	8
29	Injectable in situ forming hydrogels based on natural and synthetic polymers for potential application in cartilage repair. RSC Advances, 2015, 5, 19715-19723.	3.6	28
30	Matrices of a hydrophobically functionalized hyaluronic acid derivative for the locoregional tumour treatment. Acta Biomaterialia, 2015, 25, 205-215.	8.3	15
31	In situ forming hydrogels of hyaluronic acid and inulin derivatives for cartilage regeneration. Carbohydrate Polymers, 2015, 122, 408-416.	10.2	66
32	A polycarboxylic/amino functionalized hyaluronic acid derivative for the production of pH sensible hydrogels in the prevention of bacterial adhesion on biomedical surfaces. International Journal of Pharmaceutics, 2015, 478, 70-77.	5.2	30
33	Synthesis, characterization and foaming of PHEA–PLLA, a new graft copolymer for biomedical engineering. Materials Science and Engineering C, 2014, 41, 301-308.	7.3	18
34	Medicated hydrogels of hyaluronic acid derivatives for use in orthopedic field. International Journal of Pharmaceutics, 2013, 449, 84-94.	5.2	65
35	Chemical hydrogels based on a hyaluronic acid-graft-α-elastin derivative as potential scaffolds for tissue engineering. Materials Science and Engineering C, 2013, 33, 2541-2549.	7.3	29
36	A new hyaluronic acid pH sensitive derivative obtained by ATRP for potential oral administration of proteins. International Journal of Pharmaceutics, 2013, 457, 150-157.	5.2	41

#	Article	IF	CITATIONS
37	New hyaluronic acid based brush copolymers synthesized by atom transfer radical polymerization. Carbohydrate Polymers, 2013, 92, 1054-1063.	10.2	21
38	Biocompatible hydrogels based on hyaluronic acid cross-linked with a polyaspartamide derivative as delivery systems for epithelial limbal cells. International Journal of Pharmaceutics, 2011, 414, 104-111.	5.2	30
39	In situ gel forming graft copolymers of a polyaspartamide and polylactic acid: Preparation and characterization. European Polymer Journal, 2008, 44, 3764-3775.	5.4	17
40	Inulin–iron complexes: A potential treatment of iron deficiency anaemia. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 267-276.	4.3	66
41	Effect of alkyl derivatization of gellan gum during the fabrication of electrospun membranes. Journal of Industrial Textiles, 0, , 152808372110075.	2.4	3