Bi-Yi Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5727625/publications.pdf

Version: 2024-02-01

687363 610901 1,021 24 13 24 citations h-index g-index papers 24 24 24 1710 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews, 2018, 47, 5646-5683.	38.1	410
2	A branched electrode based electrochemical platform: towards new label-free and reagentless simultaneous detection of two biomarkers. Chemical Communications, 2013, 49, 1052-1054.	4.1	93
3	Simultaneous electrochemical immunoassay using CdS/DNA and PbS/DNA nanochains as labels. Biosensors and Bioelectronics, 2013, 39, 177-182.	10.1	78
4	Electrochemiluminescence analysis of folate receptors on cell membrane with on-chip bipolar electrode. Lab on A Chip, $2011, 11, 2720$.	6.0	62
5	Dual-Functional Carbon Dots Pattern on Paper Chips for Fe ³⁺ and Ferritin Analysis in Whole Blood. Analytical Chemistry, 2017, 89, 2131-2137.	6.5	58
6	A novel microfluidic platform with stable concentration gradient for on chip cell culture and screening assays. Lab on A Chip, 2013, 13, 3714.	6.0	35
7	Versatile Microfluidic Droplets Array for Bioanalysis. ACS Applied Materials & Samp; Interfaces, 2015, 7, 935-940.	8.0	35
8	Paper Capillary Enables Effective Sampling for Microfluidic Paper Analytical Devices. ACS Sensors, 2018, 3, 1416-1423.	7.8	34
9	Large scale lithography-free nano channel array on polystyrene. Lab on A Chip, 2010, 10, 2894.	6.0	30
10	Glass etching to bridge micro- and nanofluidics. Lab on A Chip, 2012, 12, 381-386.	6.0	30
11	Confined Microenvironments from Thermoresponsive Dendronized Polymers. Macromolecular Rapid Communications, 2020, 41, e2000325.	3.9	28
12	Microfluidic PDMS on paper (POP) devices. Lab on A Chip, 2017, 17, 120-127.	6.0	27
13	One step high quality poly(dimethylsiloxane)-hydrocarbon plastics bonding. Biomicrofluidics, 2012, 6, 16507-165078.	2.4	17
14	On chip steady liquid–gas phase separation for flexible generation of dissolved gas concentration gradient. Lab on A Chip, 2012, 12, 1281.	6.0	13
15	Thermoresponsive cationic dendronized copolymers and their corresponding nanogels as smart gene carriers. Polymer Chemistry, 2020, 11, 4105-4114.	3.9	13
16	Liquid–gas dual phase microfluidic system for biocompatible CaCO3 hollow nanoparticles generation and simultaneous molecule doping. Chemical Communications, 2012, 48, 11635.	4.1	10
17	Thermoresponsive Nanogels from Dendronized Copolymers for Complexation, Protection and Release of Nucleic Acids. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1164-1170.	3.8	10
18	Microfluidic liquid-air dual-gradient chip for synergic effect bio-evaluation of air pollutant. Talanta, 2018, 182, 202-209.	5.5	9

#	Article	IF	CITATIONS
19	Combination of DNA with polymers. Polymer Chemistry, 2021, 12, 1898-1917.	3.9	8
20	Liquid gradient in two-dimensional matrix for high throughput screening. Biomicrofluidics, 2013, 7, 064116.	2.4	6
21	LCST and UCST-type thermoresponsive behavior in dendronized gelatins. Polymer Chemistry, 2022, 13, 2813-2821.	3.9	5
22	A microfluidic cigarette smoke collecting platform for simultaneous sample extraction and multiplex analysis. Talanta, 2016, 150, 455-462.	5.5	4
23	Abnormal Liquid Chasing Effect in Paper Capillary Enables Versatile Gradient Generation on Microfluidic Paper Analytical Devices. Analytical Chemistry, 2020, 92, 2722-2730.	6.5	4
24	Living-DNA Nanogel Appendant Enables <i>In Situ</i> Modulation and Quantification of Regulation Effects on Membrane Proteins. ACS Applied Bio Materials, 2021, 4, 4565-4574.	4.6	2