Javier Fernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5727286/publications.pdf

Version: 2024-02-01

759233 580821 35 626 12 25 h-index citations g-index papers 35 35 35 607 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High-Velocity Oxyfuel Cr ₃ C ₂ -NiCr Replacing Hard Chromium Coatings. Journal of Thermal Spray Technology, 2005, 14, 335-341.	3.1	97
2	Effects of thickness coating on the electrochemical behaviour of thermal spray Cr3C2–NiCr coatings. Surface and Coatings Technology, 2002, 153, 107-113.	4.8	84
3	Electrochemical behavior of thermally sprayed stainless steel coatings in 3.4% NaCl solution. Corrosion Science, 2005, 47, 605-620.	6.6	62
4	Effect of Heat Treatments on HVOF Hydroxyapatite Coatings. Journal of Thermal Spray Technology, 2007, 16, 220-228.	3.1	59
5	Comparison of the friction and wear behaviour of WC–Ni–Co–Cr and WC–Co hardmetals in contact with steel at high temperatures. Wear, 2012, 280-281, 15-21.	3.1	45
6	Influence of spraying parameters on the electrochemical behaviour of HVOF thermally sprayed stainless steel coatings in 3.4% NaCl. Surface and Coatings Technology, 2006, 200, 3064-3072.	4.8	41
7	Electrochemical and Structural Characterization of Heat-Treated Cr[sub 3]C[sub 2]–NiCr Coatings. Journal of the Electrochemical Society, 2006, 153, B434.	2.9	24
8	Thermal stability of the martensitic transformation of Cu–Al–Ni–Mn–Ti. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 723-725.	5.6	23
9	Corrosion Resistance Evaluation of HVOF Produced Hydroxyapatite and TiO2-hydroxyapatite Coatings in Hanks' Solution. Materials Research, 2018, 21, .	1.3	23
10	Electrochemical behaviour of thermally sprayed Cr3C2–NiCr coatings in 0.5 M H2SO4 media. Journal of Applied Electrochemistry, 2002, 32, 1287-1295.	2.9	22
11	The influence of gun transverse speed on electrochemical behaviour of thermally sprayed Cr3C2–NiCr coatings in 0.5 M H2SO4 solution. Electrochimica Acta, 2004, 49, 627-634.	5.2	21
12	Conditioning treatments of Cu–Al–Be shape memory alloys for dampers. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 1085-1088.	5.6	16
13	TEM study on the microstructure of Cu–Al–Ag shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 726-729.	5.6	13
14	Behavior of NiTi Wires for Dampers and Actuators in Extreme Conditions. Journal of Materials Engineering and Performance, 2015, 24, 3323-3327.	2.5	12
15	A one-cycle training technique for copper-based shape memory alloys. Journal of Materials Processing Technology, 2003, 139, 117-119.	6.3	11
16	Wear and corrosion of metal-matrix (stainless steel or NiTi)-TiC coatings. Physics Procedia, 2010, 10, 77-80.	1.2	9
17	Rheological behaviour of submicron mullite–carbon nanofiber suspensions for Atmospheric Plasma Spraying coatings. Journal of the European Ceramic Society, 2014, 34, 475-483.	5.7	9
18	Tribological Study of Plasma Hydroxyapatite Coatings. Key Engineering Materials, 2004, 254-256, 383-386.	0.4	8

#	Article	IF	Citations
19	On the electrochemical behavior of Cu–16%Zn–6.5%Al alloy containing the β′-phase (martensite) in borate buffer. Electrochimica Acta, 2013, 107, 238-247.	5.2	8
20	Study of γ precipitates induced by the stabilized stress-induced martensite (SSIM) training method in Cu–Zn–Al alloys. Intermetallics, 2000, 8, 703-707.	3.9	6
21	Study of Adhesion Relationship of Hydroxyapatite-Titania Coating Obtained by HVOF. Materials Science Forum, 2010, 636-637, 82-88.	0.3	6
22	The influence of deformation imposed during training on the two-way shape-memory effect obtained in a Cu-Zn-Al-Co alloy by the stabilized stress-induced martensite training method. Journal of Materials Science Letters, 1992, 11, 964-967.	0.5	5
23	Electrochemical Corrosion of Cermet Coatings in Artificial Marine Water. Materials Science Forum, 1998, 289-292, 667-678.	0.3	5
24	Micro and macroscopic effects on the long time guaranteed behaviour of Cu-based shape memory alloys. Materials Science & Dicate Science & Dica	5.6	5
25	display="inline" overriow="scroll" xmins:xocs="http://www.elsevier.com/xmi/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.w3.org/1998/Math/MathML"	1.2	3
26	Structural Characterization of Intermetallic NiTi Coatings Obtained by Thermal Spray Technologies. Materials Science Forum, 0, 636-637, 1084-1090.	0.3	3
27	Effect of Small γ Precipitates on the Two-way Shape Memory Effect in a Cu–Zn–Al Alloy. Materials Characterization, 2000, 44, 365-370.	4.4	2
28	Oxidation Behaviour of Stainles Steel Matrix with TiC and TiC+TiB ₂ SHS Powders in a Thermal Spray Process. Defect and Diffusion Forum, 0, 289-292, 455-460.	0.4	2
29	La $\tilde{A}^{1}\!\!/\!4$ e back-reflection method for crystallographic orientation of a martensitic Cu-Zn-Al single crystal of the monoclinic system. Quimica Nova, 2008, 31, 154-159.	0.3	1
30	The surveys: nexus between industry and academia. , 2015, , .		1
31	Two-way shape memory effects after the training of bicrystalline Cu-Zn-Al-Co by stabilized stress induced martensite. Journal of Materials Science Letters, 1994, 13, 1195-1197.	0.5	0
32	Thermomechanical Fatigue Behavior of NiTi Wires. Materials Science Forum, 2013, 738-739, 311-315.	0.3	0
33	NiTi Splat Features during Vacuum Thermal Spraying onto Several Substrates. Materials Science Forum, 2013, 738-739, 357-361.	0.3	0
34	Competency Training of Students of the Faculty of Chemistry of the University of Barcelona by Conducting Internal Audits. Procedia, Social and Behavioral Sciences, 2015, 196, 59-62.	0.5	0
35	The surveys to the companies: A tool for the improvement of degrees. Journal of Technology and Science Education, 2017, 7, 80.	1.2	0