
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5727199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes. Journal of Hydrology, 2012, 454-455, 123-130.	2.3	307
2	Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. Journal of Hydrology, 2013, 484, 26-37.	2.3	256
3	Soil conservation planning at the small watershed level using RUSLE with GIS: a case study in the Three Gorge Area of China. Catena, 2004, 55, 33-48.	2.2	206
4	Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds. Journal of Hydrology, 2013, 498, 165-176.	2.3	198
5	Soil erosion hazard evaluation—An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecological Modelling, 2009, 220, 1724-1734.	1.2	190
6	Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China. Catena, 2009, 77, 1-7.	2.2	154
7	Interrill erosion from disturbed and undisturbed samples in relation to topsoil aggregate stability in red soils from subtropical China. Catena, 2010, 81, 240-248.	2.2	133
8	Effects of Mulch Cover Rate on Interrill Erosion Processes and the Size Selectivity of Eroded Sediment on Steep Slopes. Soil Science Society of America Journal, 2013, 77, 257-267.	1.2	129
9	Rainfall kinetic energy controlling erosion processes and sediment sorting on steep hillslopes: A case study of clay loam soil from the Loess Plateau, China. Journal of Hydrology, 2014, 512, 168-176.	2.3	126
10	Mixed artificial grasslands with more roots improved mine soil infiltration capacity. Journal of Hydrology, 2016, 535, 54-60.	2.3	124
11	A fuzzy analytic hierarchy process (FAHP) approach to eco-environmental vulnerability assessment for the danjiangkou reservoir area, China. Ecological Modelling, 2009, 220, 3439-3447.	1.2	118
12	The effects of rainfall regimes and land use changes on runoff and soil loss in a small mountainous watershed. Catena, 2012, 99, 1-8.	2.2	107
13	Size Selectivity of Eroded Sediment Associated with Soil Texture on Steep Slopes. Soil Science Society of America Journal, 2015, 79, 917-929.	1.2	106
14	Legumes Functional Group Promotes Soil Organic Carbon and Nitrogen Storage by Increasing Plant Diversity. Land Degradation and Development, 2017, 28, 1336-1344.	1.8	104
15	Spatial and seasonal patterns in stream water contamination across mountainous watersheds: Linkage with landscape characteristics. Journal of Hydrology, 2015, 523, 398-408.	2.3	100
16	Quantitative analysis of factors controlling sediment yield in mountainous watersheds. Geomorphology, 2014, 226, 193-201.	1.1	99
17	Modeling the impacts of integrated small watershed management on soil erosion and sediment delivery: A case study in the Three Gorges Area, China. Journal of Hydrology, 2012, 438-439, 156-167.	2.3	94
18	Grazing exclusion effects on above- and below-ground C and N pools of typical grassland on the Loess Plateau (China). Catena, 2014, 123, 113-120.	2.2	89

#	Article	IF	CITATIONS
19	Aggregate stability and associated organic carbon and nitrogen as affected by soil erosion and vegetation rehabilitation on the Loess Plateau. Catena, 2018, 167, 257-265.	2.2	88
20	Root channels to indicate the increase in soil matrix water infiltration capacity of arid reclaimed mine soils. Journal of Hydrology, 2017, 546, 133-139.	2.3	87
21	Tradeâ€off between vegetation type, soil erosion control and surface water in global semiâ€arid regions: A metaâ€analysis. Journal of Applied Ecology, 2020, 57, 875-885.	1.9	84
22	Soil moisture dynamics within soil profiles and associated environmental controls. Catena, 2016, 136, 189-196.	2.2	79
23	Modeling the daily suspended sediment concentration in a hyperconcentrated river on the Loess Plateau, China, using the Wavelet–ANN approach. Geomorphology, 2013, 186, 181-190.	1.1	72
24	Rainfall, runoff, and suspended sediment delivery relationships in a small agricultural watershed of the Three Gorges area, China. Geomorphology, 2011, 135, 158-166.	1.1	70
25	Soil thickness effect on hydrological and erosion characteristics under sloping lands: A hydropedological perspective. Geoderma, 2011, 167-168, 41-53.	2.3	68
26	Effectiveness of re-vegetated forest and grassland on soil erosion control in the semi-arid Loess Plateau. Catena, 2020, 195, 104787.	2.2	63
27	Linking watershed geomorphic characteristics to sediment yield: Evidence from the Loess Plateau of China. Geomorphology, 2015, 234, 19-27.	1.1	62
28	Evaluating Hyperspectral Vegetation Indices for Leaf Area Index Estimation of Oryza sativa L. at Diverse Phenological Stages. Frontiers in Plant Science, 2017, 8, 820.	1.7	62
29	Using biomarkers as fingerprint properties to identify sediment sources in a small catchment. Science of the Total Environment, 2016, 557-558, 123-133.	3.9	61
30	Role of groundcover management in controlling soil erosion under extreme rainfall in citrus orchards of southern China. Journal of Hydrology, 2020, 582, 124290.	2.3	61
31	Influence of microtopography, ridge geometry and rainfall intensity on soil erosion induced by contouring failure. Soil and Tillage Research, 2014, 136, 1-8.	2.6	60
32	Interactions of soil water content heterogeneity and species diversity patterns in semi-arid steppes on the Loess Plateau of China. Journal of Hydrology, 2014, 519, 1362-1367.	2.3	58
33	Spatio-temporal dynamics of soil moisture driven by â€~Grain for Green' program on the Loess Plateau, China. Agriculture, Ecosystems and Environment, 2019, 269, 204-214.	2.5	58
34	Effects of rock fragment cover on hydrological response and soil loss from Regosols in a semi-humid environment in South-West China. Geomorphology, 2012, 151-152, 234-242.	1.1	57
35	Vegetation restoration and fine roots promote soil infiltrability in heavy-textured soils. Soil and Tillage Research, 2020, 198, 104542.	2.6	55
36	Soil moisture response to environmental factors following precipitation events in a small catchment. Catena, 2014, 120, 73-80.	2.2	54

#	Article	IF	CITATIONS
37	Effects of soil conservation on soil properties of citrus orchards in the Threeâ€Gorges Area, China. Land Degradation and Development, 2012, 23, 34-42.	1.8	52
38	Hydrological and environmental controls of the stream nitrate concentration and flux in a small agricultural watershed. Journal of Hydrology, 2017, 545, 355-366.	2.3	52
39	Freeze/thaw and soil moisture effects on wind erosion. Geomorphology, 2014, 207, 141-148.	1.1	51
40	Runoff and soil erosion of field plots in a subtropical mountainous region of China. Journal of Hydrology, 2017, 552, 387-395.	2.3	51
41	Trade-off between surface runoff and soil erosion during the implementation of ecological restoration programs in semiarid regions: A meta-analysis. Science of the Total Environment, 2020, 712, 136477.	3.9	51
42	Inland water bodies in China: Features discovered in the long-term satellite data. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25491-25496.	3.3	50
43	Mother-derived trans-generational immune priming in the red palm weevil, <i>Rhynchophorus ferrugineus</i> Olivier (Coleoptera, Dryophthoridae). Bulletin of Entomological Research, 2014, 104, 742-750.	0.5	46
44	Assessing regional environmental quality by integrated use of remote sensing, GIS, and spatial multi-criteria evaluation for prioritization of environmental restoration. Environmental Monitoring and Assessment, 2014, 186, 6993-7009.	1.3	45
45	Effect of Soil Fulvic and Humic Acids on Pb Binding to the Goethite/Solution Interface: Ligand Charge Distribution Modeling and Speciation Distribution of Pb. Environmental Science & Technology, 2018, 52, 1348-1356.	4.6	45
46	Soil physical properties response to grassland conversion from cropland on the semiâ€arid area. Ecohydrology, 2016, 9, 1471-1479.	1.1	43
47	Soil aggregates are key factors that regulate erosion-related carbon loss in citrus orchards of southern China: Bare land vs. grass-covered land. Agriculture, Ecosystems and Environment, 2021, 309, 107254.	2.5	43
48	Biomarkers in sedimentary sequences: Indicators to track sediment sources over decadal timescales. Geomorphology, 2017, 278, 1-11.	1.1	42
49	Above- and below-ground response to soil water change in an alpine wetland ecosystem on the Qinghai-Tibetan Plateau, China. Journal of Hydrology, 2013, 476, 120-127.	2.3	41
50	Effect of local watershed landscapes on the nitrogen and phosphorus concentrations in the waterbodies of reservoir bays. Science of the Total Environment, 2020, 716, 137132.	3.9	41
51	The potential for soil erosion control associated with socio-economic development in the hilly red soil region, southern China. Catena, 2020, 194, 104678.	2.2	41
52	Molecular investigation on the binding of Cd(II) by the binary mixtures of montmorillonite with two bacterial species. Environmental Pollution, 2017, 229, 871-878.	3.7	40
53	Large-scale afforestation significantly increases permanent surface water in China's vegetation restoration regions. Agricultural and Forest Meteorology, 2020, 290, 108001.	1.9	38
54	Effects of shrub patch size succession on plant diversity and soil water content in the water-wind erosion crisscross region on the Loess Plateau. Catena, 2016, 144, 177-183.	2.2	37

#	Article	IF	CITATIONS
55	Effects of Timeâ€6inceâ€Fire on Vegetation Composition and Structures in Semiâ€Arid Perennial Grassland on the Loess Plateau, China. Clean - Soil, Air, Water, 2014, 42, 98-103.	0.7	36
56	Linking water environmental factors and the local watershed landscape to the chlorophyll a concentration in reservoir bays. Science of the Total Environment, 2021, 758, 143617.	3.9	35
57	Source identification and budget evaluation of eroded organic carbon in an intensive agricultural catchment. Agriculture, Ecosystems and Environment, 2017, 247, 290-297.	2.5	34
58	Discharge and suspended sediment patterns in a small mountainous watershed with widely distributed rock fragments. Journal of Hydrology, 2015, 528, 238-248.	2.3	32
59	Sediment source analysis using the fingerprinting method in a small catchment of the Loess Plateau, China. Journal of Soils and Sediments, 2016, 16, 1655-1669.	1.5	31
60	Assessing soil erosion hazard -a raster based GIS approach with spatial principal component analysis (SPCA). Earth Science Informatics, 2015, 8, 853-865.	1.6	30
61	Raindrop Size and Flow Depth Control Sediment Sorting in Shallow Flows on Steep Slopes. Water Resources Research, 2018, 54, 9978-9995.	1.7	30
62	Rising middle and rich classes drove China's carbon emissions. Resources, Conservation and Recycling, 2020, 159, 104839.	5.3	30
63	Grazing as a mediator for maintenance of offspring diversity: Sexual and clonal recruitment in alpine grassland communities. Flora: Morphology, Distribution, Functional Ecology of Plants, 2011, 206, 241-245.	0.6	29
64	Diversity–Productivity Tradeâ€off During Converting Cropland to Perennial Grassland in the Semiâ€arid Areas of China. Land Degradation and Development, 2017, 28, 699-707.	1.8	29
65	Estimation of sediment trapping behind check dams using high-density electrical resistivity tomography. Journal of Hydrology, 2019, 568, 1007-1016.	2.3	29
66	Responses of soil respiration and its temperature sensitivity to nitrogen addition: A meta-analysis in China. Applied Soil Ecology, 2020, 150, 103484.	2.1	29
67	A synthesized approach for estimating the C-factor of RUSLE for a mixed-landscape watershed: A case study in the Gongshui watershed, southern China. Agriculture, Ecosystems and Environment, 2020, 301, 107009.	2.5	29
68	Plant community characteristics and functional traits as drivers of soil erodibility mitigation along a land degradation gradient. Land Degradation and Development, 2020, 31, 1851-1863.	1.8	29
69	The effects of land use change on environmental quality in the red soil hilly region, China: A case study in Xianning County. Environmental Monitoring and Assessment, 2009, 150, 295-306.	1.3	28
70	Wetting Rate and Clay Content Effects on Interrill Erosion in Ultisols of Southeastern China. Pedosphere, 2010, 20, 129-136.	2.1	28
71	Mosaic-pattern vegetation formation and dynamics driven by the water–wind crisscross erosion. Journal of Hydrology, 2016, 538, 355-362.	2.3	28
72	Effects of human activities on soil organic carbon redistribution at an agricultural watershed scale on the Chinese Loess Plateau. Agriculture, Ecosystems and Environment, 2020, 303, 107112.	2.5	28

#	Article	IF	CITATIONS
73	Effects of long-term fertilization and mulch on soil fertility in contour hedgerow systems: A case study on steeplands from the Three Gorges Area, China. Nutrient Cycling in Agroecosystems, 2009, 84, 39-48.	1.1	27
74	Evaluation of rainfall erosivity and its temporal variation in the Yanhe River catchment of the Chinese Loess Plateau. Natural Hazards, 2014, 74, 585-602.	1.6	27
75	Influences of Land Use Change on Baseflow in Mountainous Watersheds. Forests, 2016, 7, 16.	0.9	27
76	Soil water response of plant functional groups along an artificial legume grassland succession under semi-arid conditions. Agricultural and Forest Meteorology, 2019, 278, 107670.	1.9	27
77	Decoupling the effects of vegetation dynamics and climate variability on watershed hydrological characteristics on a monthly scale from subtropical China. Agriculture, Ecosystems and Environment, 2019, 279, 14-24.	2.5	27
78	Soil-hydrological properties response to grazing exclusion in a steppe grassland of the Loess Plateau. Environmental Earth Sciences, 2014, 71, 745-752.	1.3	26
79	A systematic review of soil erosion in citrus orchards worldwide. Catena, 2021, 206, 105558.	2.2	26
80	Runoff maintenance and sediment reduction of different grasslands based on simulated rainfall experiments. Journal of Hydrology, 2019, 572, 329-335.	2.3	25
81	Fine roots benefit soil physical properties key to mitigate soil detachment capacity following the restoration of eroded land. Plant and Soil, 2020, 446, 487-501.	1.8	25
82	Aboveground dominant functional group predicts belowground properties in an alpine grassland community of western China. Journal of Soils and Sediments, 2011, 11, 1011-1019.	1.5	24
83	Partial Least Squares Regression for Determining the Control Factors for Runoff and Suspended Sediment Yield during Rainfall Events. Water (Switzerland), 2015, 7, 3925-3942.	1.2	24
84	Copper adsorption on composites of goethite, cells of <i><scp>P</scp>seudomonas putida</i> and humic acid. European Journal of Soil Science, 2017, 68, 514-523.	1.8	24
85	Prevalent sediment source shift after revegetation in the Loess Plateau of China: Implications from sediment fingerprinting in a small catchment. Land Degradation and Development, 2018, 29, 3963-3973.	1.8	24
86	Selective transport of soil organic and inorganic carbon in eroded sediment in response to raindrop sizes and inflow rates in rainstorms. Journal of Hydrology, 2019, 575, 42-53.	2.3	23
87	Sediment deposition changes the relationship between soil organic and inorganic carbon: Evidence from the Chinese Loess Plateau. Agriculture, Ecosystems and Environment, 2020, 302, 107076.	2.5	22
88	Artificial Management Improves Soil Moisture, C, N and P in an Alpine Sandy Meadow of Western China. Pedosphere, 2011, 21, 407-412.	2.1	21
89	Efficacy of orchard terrace measures to minimize water erosion caused by extreme rainfall in the hilly region of China: Long-term continuous in situ observations. Journal of Environmental Management, 2021, 278, 111537.	3.8	20
90	Broad area mapping of monthly soil erosion risk using fuzzy decision tree approach: integration of multi-source data within GIS. International Journal of Geographical Information Science, 2013, 27, 1251-1267.	2.2	19

#	Article	IF	CITATIONS
91	Using structural equation modelling to identify regional socio-economic driving forces of soil erosion: A case study of Jiangxi Province, southern China. Journal of Environmental Management, 2021, 279, 111616.	3.8	19
92	Telecoupling cropland soil erosion with distant drivers within China. Journal of Environmental Management, 2021, 288, 112395.	3.8	18
93	Hydrological response of a large-scale mountainous watershed to rainstorm spatial patterns and reforestation in subtropical China. Science of the Total Environment, 2018, 645, 1083-1093.	3.9	17
94	The collapse of global plastic waste trade: Structural change, cascading failure process and potential solutions. Journal of Cleaner Production, 2021, 314, 127935.	4.6	17
95	Vegetation Change Prediction with Geo-Information Techniques in the Three Gorges Area of China. Pedosphere, 2006, 16, 457-467.	2.1	16
96	Responses of Runoff and Soil Erosion to Vegetation Removal and Tillage on Steep Lands. Pedosphere, 2013, 23, 532-541.	2.1	16
97	The effects of rainfall regimes and terracing on runoff and erosion in the Three Gorges area, China. Environmental Science and Pollution Research, 2018, 25, 9474-9484.	2.7	16
98	Correction factor for rill flow velocity measured by the dye tracer method under varying rill morphologies and hydraulic characteristics. Journal of Hydrology, 2020, 591, 125560.	2.3	16
99	Soil Organic Carbon Redistribution and Delivery by Soil Erosion in a Small Catchment of the Yellow River Basin. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005471.	1.3	16
100	Industrial polycyclic aromatic hydrocarbons (PAHs) emissions embodied in domestic trade in China in 2012. Journal of Environmental Management, 2021, 284, 111994.	3.8	15
101	The Characteristics of Extreme Erosion Events in a Small Mountainous Watershed. PLoS ONE, 2013, 8, e76610.	1.1	15
102	How to Balance Green and Grain in Marginal Mountainous Areas?. Earth's Future, 2022, 10, .	2.4	15
103	Germination strategies of 20 alpine species with varying seed mass and light availability. Australian Journal of Botany, 2013, 61, 404.	0.3	14
104	Soil erosion-related transport of neonicotinoids in new citrus orchards. Agriculture, Ecosystems and Environment, 2020, 290, 106776.	2.5	14
105	Assessment of UAV-Onboard Multispectral Sensor for Non-Destructive Site-Specific Rapeseed Crop Phenotype Variable at Different Phenological Stages and Resolutions. Remote Sensing, 2020, 12, 397.	1.8	13
106	Forty-year-old orchards promote carbon storage by changing aggregate-associated enzyme activities and microbial communities. Catena, 2022, 213, 106195.	2.2	13
107	Production-Based and Consumption-Based Accounting of Global Cropland Soil Erosion. Environmental Science & Technology, 2022, 56, 10465-10473.	4.6	13
108	Estimation of the volume of sediment deposited behind check dams based on UAV remote sensing. Journal of Hydrology, 2022, 612, 128143.	2.3	12

Zні-Ниа Shi

#	Article	IF	CITATIONS
109	Multiple perspective accountings of cropland soil erosion in China reveal its complex connection with socioeconomic activities. Agriculture, Ecosystems and Environment, 2022, 337, 108083.	2.5	12
110	Use of multi-temporal Landsat images for analyzing forest transition in relation to socioeconomic factors and the environment. International Journal of Applied Earth Observation and Geoinformation, 2011, 13, 468-476.	1.4	11
111	Hydrological Response of Sloping Farmlands with Different Rock Fragment Covers in the Purple Soil Area of China. Journal of Hydrologic Engineering - ASCE, 2013, 18, 446-456.	0.8	11
112	The regulatory effects of biotic and abiotic factors on soil respiration under different land-use types. Ecological Indicators, 2021, 127, 107787.	2.6	11
113	Validating a Basic Assumption of Using Cesiumâ€137 Method to Assess Soil Loss in a Small Agricultural Catchment. Land Degradation and Development, 2017, 28, 1772-1778.	1.8	10
114	Spatiotemporal patterns of non-point source nitrogen loss in anÂagriculturalÂcatchment. Water Science and Engineering, 2016, 9, 125-133.	1.4	9
115	Post-fire species recruitment in a semiarid perennial steppe on the Loess Plateau. Australian Journal of Botany, 2013, 61, 29.	0.3	8
116	Effects of cultivation and reforestation on suspended sediment concentrations: a case study in a mountainous catchment in China. Hydrology and Earth System Sciences, 2016, 20, 13-25.	1.9	8
117	Largeâ€scale assessment of soil erosion using a neuroâ€fuzzy model combined with GIS: A case study of Hubei Province, China. Land Degradation and Development, 2009, 20, 654-666.	1.8	7
118	Phytotoxic effects of a dominant weed Ligularia virgaurea on seed germination of Bromus inermis in an alpine meadow community. Plant Ecology and Evolution, 2011, 144, 275-280.	0.3	7
119	Linking soil thickness and plotâ€scale hydrological processes on the sloping lands in the Three Gorges Area of China: a hydropedological approach. Hydrological Processes, 2012, 26, 2248-2263.	1.1	7
120	Mid-infrared spectroscopy tracing of channel erosion in highly erosive catchments on the Chinese Loess Plateau. Science of the Total Environment, 2019, 687, 309-318.	3.9	7
121	Dynamics of dissolved heavy metals in reservoir bays under different hydrological regulation. Journal of Hydrology, 2021, 595, 126042.	2.3	7
122	High-frequency monitoring of neonicotinoids dynamics in soil-water systems during hydrological processes. Environmental Pollution, 2022, 292, 118219.	3.7	7
123	Dynamics of soil organic carbon in different-sized aggregates under splash erosion. Journal of Soils and Sediments, 2022, 22, 1713-1723.	1.5	7
124	Physical structure and rainfall controls on subsurface hydrological connectivity in hillslope-riparian-stream continuums. Catena, 2022, 214, 106286.	2.2	5
125	Modeling sediment transport and flow velocity of thawed soil with straw returning. Journal of Hydrology, 2022, 610, 127805.	2.3	4
126	Higher species diversity occurs in more fertile habitats without fertilizer disturbance in an alpine natural grassland community. Journal of Mountain Science, 2014, 11, 755-761.	0.8	3

#	Article	IF	CITATIONS
127	Socioeconomic development mitigates runoff and sediment yields in a subtropical agricultural watershed in southern China. Environmental Research Letters, 0, , .	2.2	3
128	Catchment properties controlling suspended sediment transport in wind-water erosion crisscross region. Journal of Hydrology: Regional Studies, 2022, 39, 100980.	1.0	3
129	Role of autotrophic microbes in organic matter accumulation in soils degraded by erosion. Land Degradation and Development, 2022, 33, 2092-2102.	1.8	2
130	Reply to Zhang et al.: Using long-term all-available Landsat data to study water bodies over large areas represents a paradigm shift. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6310-6311.	3.3	1
131	Regional Assessment of Eco-environmental Vulnerability Based on GIS A Case Study of Hubei Province, China. , 2009, , .		0
132	Heterogeneity and pattern of tree in Shenzhen special economic zone's urban forest, China. , 2011, , .		0