
Mingqiu Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5727086/publications.pdf Version: 2024-02-01

Михсош 7нло

#	Article	IF	CITATIONS
1	Swine Enteric Coronavirus: Diverse Pathogen–Host Interactions. International Journal of Molecular Sciences, 2022, 23, 3953.	4.1	21
2	The Development of Classical Swine Fever Marker Vaccines in Recent Years. Vaccines, 2022, 10, 603.	4.4	4
3	LDHB inhibition induces mitophagy and facilitates the progression of CSFV infection. Autophagy, 2021, 17, 2305-2324.	9.1	38
4	Induction of autophagy and suppression of type I IFN secretion by CSFV. Autophagy, 2021, 17, 925-947.	9.1	39
5	Preliminary Evaluation of Protective Efficacy of Inactivated Senecavirus A on Pigs. Life, 2021, 11, 157.	2.4	5
6	Development of a reverse-transcription recombinase polymerase amplification assay with a lateral flow assay for rapid detection of avian orthoavulavirus 1. Journal of Veterinary Diagnostic Investigation, 2021, 33, 308-312.	1.1	0
7	Recombinant pseudorabies virus with gl/gE deletion generated by overlapping polymerase chain reaction and homologous recombination technology induces protection against the PRV variant PRV-GD2013. BMC Veterinary Research, 2021, 17, 164.	1.9	14
8	Anti-Classical Swine Fever Virus Strategies. Microorganisms, 2021, 9, 761.	3.6	17
9	Development of Diagnostic Tests Provides Technical Support for the Control of African Swine Fever. Vaccines, 2021, 9, 343.	4.4	24
10	Viral Infection Modulates Mitochondrial Function. International Journal of Molecular Sciences, 2021, 22, 4260.	4.1	19
11	Molecular Events Occurring in Lipophagy and Its Regulation in Flaviviridae Infection. Frontiers in Microbiology, 2021, 12, 651952.	3.5	4
12	Development of Recombinase Aided Amplification Combined With Disposable Nucleic Acid Test Strip for Rapid Detection of Porcine Circovirus Type 2. Frontiers in Veterinary Science, 2021, 8, 676294.	2.2	15
13	Fusion Expression and Immune Effect of PCV2 Cap Protein Tandem Multiantigen Epitopes with CD154/GM-CSF. Veterinary Sciences, 2021, 8, 211.	1.7	6
14	Classical swine fever virus employs the PERK- and IRE1-dependent autophagy for viral replication in cultured cells Virulence, 2021, 12, 130-149.	4.4	18
15	The Network of Interactions Between Classical Swine Fever Virus Nonstructural Protein p7 and Host Proteins. Frontiers in Microbiology, 2020, 11, 597893.	3.5	5
16	Antiviral Role of Serine Incorporator 5 (SERINC5) Proteins in Classical Swine Fever Virus Infection. Frontiers in Microbiology, 2020, 11, 580233.	3.5	11
17	Current State of Global African Swine Fever Vaccine Development under the Prevalence and Transmission of ASF in China. Vaccines, 2020, 8, 531.	4.4	76
18	MG132 Attenuates the Replication of Classical Swine Fever Virus in vitro. Frontiers in Microbiology, 2020, 11, 852.	3.5	9

Μινοφία Ζηλο

#	Article	IF	CITATIONS
19	The Role of Autophagy and Autophagy Receptor NDP52 in Microbial Infections. International Journal of Molecular Sciences, 2020, 21, 2008.	4.1	13
20	Dual NDP52 Function in Persistent CSFV Infection. Frontiers in Microbiology, 2020, 10, 2962.	3.5	13
21	Important roles of C-terminal residues in degradation of capsid protein of classical swine fever virus. Virology Journal, 2019, 16, 127.	3.4	8
22	Host cell protein PSMB10 interacts with viral NS3 protein and inhibits the growth of classical swine fever virus. Virology, 2019, 537, 74-83.	2.4	9
23	Serum Lipidomics Analysis of Classical Swine Fever Virus Infection in Piglets and Emerging Role of Free Fatty Acids in Virus Replication in vitro. Frontiers in Cellular and Infection Microbiology, 2019, 9, 410.	3.9	22
24	Classical Swine Fever Virus Infection Induces Endoplasmic Reticulum Stress-Mediated Autophagy to Sustain Viral Replication in vivo and in vitro. Frontiers in Microbiology, 2019, 10, 2545.	3.5	24
25	Classical swine fever virus induces pyroptosis in the peripheral lymphoid organs of infected pigs. Virus Research, 2018, 250, 37-42.	2.2	11
26	Activation of Interleukin-1β Release by the Classical Swine Fever Virus Is Dependent on the NLRP3 Inflammasome, Which Affects Virus Growth in Monocytes. Frontiers in Cellular and Infection Microbiology, 2018, 8, 225.	3.9	33
27	Autophagy induces apoptosis and death of T lymphocytes in the spleen of pigs infected with CSFV. Scientific Reports, 2017, 7, 13577.	3.3	19
28	Metabolic Profiles in Cell Lines Infected with Classical Swine Fever Virus. Frontiers in Microbiology, 2017, 8, 691.	3.5	19
29	Atypical Porcine Pestivirus as a Novel Type of Pestivirus in Pigs in China. Frontiers in Microbiology, 2017, 8, 862.	3.5	58
30	CSFV Infection Up-Regulates the Unfolded Protein Response to Promote Its Replication. Frontiers in Microbiology, 2017, 8, 2129.	3.5	19
31	CSFV induced mitochondrial fission and mitophagy to inhibit apoptosis. Oncotarget, 2017, 8, 39382-39400.	1.8	56
32	Absence of autophagy promotes apoptosis by modulating the ROS-dependent RLR signaling pathway in classical swine fever virus-infected cells. Autophagy, 2016, 12, 1738-1758.	9.1	65
33	Rapid and sensitive detection of porcine epidemic diarrhea virus by reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip. Molecular and Cellular Probes, 2015, 29, 48-53.	2.1	21
34	Autophagy enhances the replication of classical swine fever virus in vitro. Autophagy, 2014, 10, 93-110.	9.1	110
35	Rapid and sensitive detection of type II porcine reproductive and respiratory syndrome virus by reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip. Journal of Virological Methods, 2014, 209, 86-94.	2.1	11