

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5727045/publications.pdf Version: 2024-02-01

		5876	3903
175	56,527	81	177
papers	citations	h-index	g-index
182 all docs	182 docs citations	182 times ranked	16743 citing authors

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
5	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
6	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	2.8	2,022
7	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
8	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
9	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	2.9	1,473
10	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	2.9	1,224
11	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	2.8	1,097
12	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	3.0	1,090
13	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	3.0	1,049
14	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	3.0	968
15	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	1.5	956
16	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	2.8	898
17	GW190521: A Binary Black Hole Merger with a Total Mass of <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext><mml:mtext> stretchy="false">⊙</mml:mtext></mml:mrow>. Physical Review</mmi:math 	nml ææ ext>	< næsada msub
18	Letters, 2020, 125, 101102. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced	8.2	808

Prospects for observing and localizing gravitational-wave tr Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.

#	Article	IF	CITATIONS
19	Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	1.5	735
20	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	2.8	728
21	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	2.9	673
22	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	3.0	633
23	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	3.0	566
24	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	3.0	514
25	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	1.6	470
26	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	2.9	466
27	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophysical Journal Letters, 2021, 915, L5.	3.0	453
28	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
29	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427
30	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	3.0	406
31	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	1.6	394
32	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	2.9	370
33	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D, 2021, 103, .	1.6	338
34	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	1.6	315
35	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	13.7	303
36	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	2.9	269

#	Article	IF	CITATIONS
37	Higher-order spin effects in the amplitude and phase of gravitational waveforms emitted by inspiraling compact binaries: Ready-to-use gravitational waveforms. Physical Review D, 2009, 79, .	1.6	264
38	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	0.5	257
39	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	3.0	230
40	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
41	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	3.0	210
42	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	1.6	200
43	Prospects for fundamental physics with LISA. General Relativity and Gravitation, 2020, 52, 1.	0.7	198
44	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	2.9	194
45	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	3.0	189
46	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	1.5	188
47	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	2.9	166
48	Parametrized tests of post-Newtonian theory using Advanced LIGO and Einstein Telescope. Physical Review D, 2010, 82, .	1.6	165
49	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	3.0	156
50	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	1.6	155
51	Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The nonspinning case. Physical Review D, 2005, 71, .	1.6	148
52	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
53	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
54	The 2.5PN gravitational wave polarizations from inspiralling compact binaries in circular orbits. Classical and Quantum Gravity, 2004, 21, 3771-3801.	1.5	138

#	Article	IF	CITATIONS
55	Post-circular expansion of eccentric binary inspirals: Fourier-domain waveforms in the stationary phase approximation. Physical Review D, 2009, 80, .	1.6	131
56	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	1.6	131
57	Probing the nonlinear structure of general relativity with black hole binaries. Physical Review D, 2006, 74, .	1.6	121
58	Testing post-Newtonian theory with gravitational wave observations. Classical and Quantum Gravity, 2006, 23, L37-L43.	1.5	119
59	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	1.6	119
60	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	2.9	119
61	Virgo status. Classical and Quantum Gravity, 2008, 25, 184001.	1.5	116
62	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	1.6	111
63	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	1.5	109
64	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	1.6	107
65	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	2.8	106
66	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	1.6	102
67	Testing the Binary Black Hole Nature of a Compact Binary Coalescence. Physical Review Letters, 2017, 119, 091101.	2.9	102
68	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	1.6	102
69	Higher signal harmonics, LISA's angular resolution, and dark energy. Physical Review D, 2007, 76, .	1.6	101
70	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	1.5	98
71	Ready-to-use post-Newtonian gravitational waveforms for binary black holes with nonprecessing spins: An update. Physical Review D, 2016, 93, .	1.6	95
72	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	2.9	94

#	Article	IF	CITATIONS
73	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	1.5	94
74	Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce. Classical and Quantum Gravity, 2009, 26, 094027.	1.5	93
75	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90
76	Inspiralling compact binaries in quasi-elliptical orbits: The complete third post-Newtonian energy flux. Physical Review D, 2008, 77, .	1.6	89
77	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	1.6	88
78	Third post-Newtonian angular momentum flux and the secular evolution of orbital elements for inspiralling compact binaries in quasi-elliptical orbits. Physical Review D, 2009, 80, .	1.6	87
79	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	2.9	84
80	The 2.5PN gravitational wave polarizations from inspiralling compact binaries in circular orbits. Classical and Quantum Gravity, 2005, 22, 3115-3117.	1.5	83
81	New horizons for fundamental physics with LISA. Living Reviews in Relativity, 2022, 25, .	8.2	82
82	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	2.9	77
83	Tail effects in the third post-Newtonian gravitational wave energy flux of compact binaries in quasi-elliptical orbits. Physical Review D, 2008, 77, .	1.6	73
84	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	1.6	73
85	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	3.0	73
86	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D, 2017, 95, .	1.6	72
87	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	1.6	72
88	Bounding the mass of the graviton with gravitational waves: effect of higher harmonics in gravitational waveform templates. Classical and Quantum Gravity, 2009, 26, 155002.	1.5	69
89	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	1.6	69
90	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69

#	Article	IF	CITATIONS
91	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	2.9	68
92	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	3.0	65
93	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	3.0	63
94	Gravitational-wave phasing for low-eccentricity inspiralling compact binaries to 3PN order. Physical Review D, 2016, 93, .	1.6	63
95	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	1.6	61
96	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	1.6	60
97	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	1.6	60
98	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	1.6	59
99	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	1.6	59
100	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
101	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	1.6	52
102	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	1.6	47
103	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	1.6	46
104	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	3.0	44
105	All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Physical Review D, 2021, 103, .	1.6	43
106	Higher harmonics increase LISA's mass reach for supermassive black holes. Physical Review D, 2007, 75,	1.6	40
107	Third post-Newtonian gravitational waveforms for compact binary systems in general orbits: Instantaneous terms. Physical Review D, 2015, 91, .	1.6	39
108	Dark Sirens to Resolve the Hubble–Lemaître Tension. Astrophysical Journal Letters, 2020, 905, L28.	3.0	38

#	Article	IF	CITATIONS
109	Constraining the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi></mml:math> -Mode– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi> -Mode Tidal Instability with GW170817. Physical Review Letters. 2019, 122, 061104.</mml:math 	2.9	36
110	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	1.6	35
111	Black holes in the low-mass gap: Implications for gravitational-wave observations. Physical Review D, 2020, 101, .	1.6	34
112	Testing the multipole structure of compact binaries using gravitational wave observations. Physical Review D, 2018, 98, .	1.6	33
113	Multiparameter Tests of General Relativity Using Multiband Gravitational-Wave Observations. Physical Review Letters, 2020, 125, 201101.	2.9	33
114	All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	1.6	33
115	Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run. Astrophysical Journal, 2022, 932, 133.	1.6	33
116	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. Astrophysical Journal Letters, 2021, 913, L27.	3.0	32
117	Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. Astronomy and Astrophysics, 2022, 659, A84.	2.1	32
118	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	1.6	31
119	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	1.6	30
120	Generic bounds on dipolar gravitational radiation from inspiralling compact binaries. Classical and Quantum Gravity, 2012, 29, 075011.	1.5	29
121	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	1.6	29
122	Search for gravitational waves associated with GRB 050915a using the Virgo detector. Classical and Quantum Gravity, 2008, 25, 225001.	1.5	28
123	Spin-induced deformations and tests of binary black hole nature using third-generation detectors. Physical Review D, 2019, 99, .	1.6	27
124	Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run. Physical Review D, 2022, 105, .	1.6	27
125	LISA as a dark energy probe. Classical and Quantum Gravity, 2009, 26, 094021.	1.5	26
126	TESTS OF GENERAL RELATIVITY AND ALTERNATIVE THEORIES OF GRAVITY USING GRAVITATIONAL WAVE OBSERVATIONS. International Journal of Modern Physics D, 2013, 22, 1341012.	0.9	23

#	Article	IF	CITATIONS
127	Constraints on the binary black hole nature of GW151226 and GW170608 from the measurement of spin-induced quadrupole moments. Physical Review D, 2019, 100, .	1.6	23
128	Testing the multipole structure and conservative dynamics of compact binaries using gravitational wave observations: The spinning case. Physical Review D, 2019, 100, .	1.6	21
129	Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. Physical Review D, 2022, 105, .	1.6	21
130	Parameter estimation of coalescing supermassive black hole binaries with LISA. Physical Review D, 2006, 74, .	1.6	20
131	Tests of general relativity using multiband observations of intermediate mass binary black hole mergers. Physical Review D, 2021, 103, .	1.6	20
132	Constraining the orbital eccentricity of inspiralling compact binary systems with Advanced LIGO. Physical Review D, 2022, 105, .	1.6	20
133	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
134	Publisher's Note: Higher signal harmonics, LISA's angular resolution, and dark energy [Phys. Rev. D76, 104016 (2007)]. Physical Review D, 2007, 76, .	1.6	19
135	Synergy of short gamma ray burst and gravitational wave observations: Constraining the inclination angle of the binary and possible implications for off-axis gamma ray bursts. Physical Review D, 2014, 90, .	1.6	19
136	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	1.6	19
137	All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	1.6	19
138	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	1.5	18
139	Comparison of post-Newtonian mode amplitudes with numerical relativity simulations of binary black holes. Classical and Quantum Gravity, 2020, 37, 065006.	1.5	18
140	All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO's and Advanced Virgo's first three observing runs. Physical Review D, 2022, 105, .	1.6	18
141	Gravitational wave burst search in the Virgo C7 data. Classical and Quantum Gravity, 2009, 26, 085009.	1.5	16
142	Projected constraints on the dispersion of gravitational waves using advanced ground- and space-based interferometers. Physical Review D, 2017, 96, .	1.6	16
143	Remnant Black Hole Kicks and Implications for Hierarchical Mergers. Astrophysical Journal Letters, 2021, 918, L31.	3.0	16
144	Precessing supermassive black hole binaries and dark energy measurements with LISA. Physical Review D, 2009, 80, .	1.6	15

#	Article	IF	CITATIONS
145	Singular value decomposition in parametrized tests of post-Newtonian theory. Classical and Quantum Gravity, 2013, 30, 025011.	1.5	15
146	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3b. Astrophysical Journal, 2022, 928, 186.	1.6	15
147	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	1.6	14
148	Population inference of spin-induced quadrupole moments as a probe for nonblack hole compact binaries. Physical Review D, 2022, 105, .	1.6	11
149	Cleaning the Virgo sampled data for the search of periodic sources of gravitational waves. Classical and Quantum Gravity, 2009, 26, 204002.	1.5	10
150	Rates of short-GRB afterglows in association with binary neutron star mergers. Monthly Notices of the Royal Astronomical Society, 2018, 475, 699-707.	1.6	10
151	Parametrized tests of post-Newtonian theory using principal component analysis. Physical Review D, 2022, 105, .	1.6	10
152	Parameter estimation of neutron star-black hole binaries using an advanced gravitational-wave detector network: Effects of the full post-Newtonian waveform. Physical Review D, 2014, 90, .	1.6	9
153	Exploring short-GRB afterglow parameter space for observations in coincidence with gravitational waves. Monthly Notices of the Royal Astronomical Society, 2018, 474, 5340-5350.	1.6	9
154	Noise studies during the first Virgo science run and after. Classical and Quantum Gravity, 2008, 25, 184003.	1.5	8
155	Laser with an in-loop relative frequency stability of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:mn> 1.0 </mml:mn> <mml:mo>× </mml:mo> <mml:msup> <mml:mrow> <mr a 100-ms time scale for gravitational-wave detection. Physical Review A, 2009, 79, .</mr </mml:mrow></mml:msup></mml:mrow></mml:math 	nl:mn>10	</td
156	Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1. Journal of Physics: Conference Series, 2010, 228, 012015.	0.3	8
157	In-vacuum Faraday isolation remote tuning. Applied Optics, 2010, 49, 4780.	2.1	8
158	Unveiling the spectrum of inspiralling binary black holes. Physical Review D, 2021, 103, .	1.6	8
159	2.5PN linear momentum flux from inspiralling compact binaries in quasicircular orbits and associated recoil: Nonspinning case. Physical Review D, 2012, 85, .	1.6	7
160	Detectability of gravitational higher order modes in the third-generation era. Physical Review D, 2021, 104, .	1.6	7
161	Template-space metric for searches for gravitational waves from the inspiral, merger, and ringdown of binary black holes. Physical Review D, 2015, 91, .	1.6	6
162	Implications of Binary Black Hole Detections on the Merger Rates of Double Neutron Stars and Neutron Star–Black Holes. Astrophysical Journal Letters, 2017, 849, L14.	3.0	4

#	Article	IF	CITATIONS
163	On the Energetics of a Possible Relativistic Jet Associated with the Binary Neutron Star Merger Candidate S190425z. Astrophysical Journal, 2020, 891, 130.	1.6	4
164	Summary of session B3: analytic approximations, perturbation methods and their applications. Classical and Quantum Gravity, 2008, 25, 114020.	1.5	3
165	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	3
166	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	2
167	Imprints of the redshift evolution of double neutron star merger rate on the signal-to-noise ratio distribution. Monthly Notices of the Royal Astronomical Society, 2020, 496, 523-531.	1.6	2
168	2.5PN Kick from Black-Hole Binaries in Circular Orbit: Nonspinning Case. Springer Proceedings in Physics, 2014, , 169-175.	0.1	2
169	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
170	A THERMAL COMPENSATION SYSTEM FOR THE GRAVITATIONAL WAVE DETECTOR VIRGO. , 2012, , .		2
171	Gravitational-wave astronomy. Resonance, 2011, 16, 922-932.	0.2	1
172	Explosive and Radio-Selected Transients: Transient Astronomy with Square Kilometre Array and its Precursors. Journal of Astrophysics and Astronomy, 2016, 37, 1.	0.4	1
173	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
174	PROGRESSES IN THE REALIZATION OF A MONOLITHIC SUSPENSION SYSTEM IN VIRGO. , 2012, , .		0
175	NOISE ANALYSIS IN VIRGO: ON-LINE AND OFFLINE TOOLS FOR NOISE CHARACTERIZATION. , 2012, , .		0