Cristina Grange

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5726891/publications.pdf

Version: 2024-02-01

79	7,548	39	78
papers	citations	h-index	g-index
82	82	82	9781
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Generation of Spike-Extracellular Vesicles (S-EVs) as a Tool to Mimic SARS-CoV-2 Interaction with Host Cells. Cells, 2022, 11, 146.	1.8	9
2	Extracellular Vesicles Derived from Human Liver Stem Cells Attenuate Chronic Kidney Disease Development in an In Vivo Experimental Model of Renal Ischemia and Reperfusion Injury. International Journal of Molecular Sciences, 2022, 23, 1485.	1.8	6
3	IL-3 signalling in the tumour microenvironment shapes the immune response via tumour endothelial cell-derived extracellular vesicles. Pharmacological Research, 2022, 179, 106206.	3.1	11
4	Single extracellular vesicle analysis in human amniotic fluid shows evidence of phenotype alterations in preeclampsia. Journal of Extracellular Vesicles, 2022, 11, e12217.	5 . 5	19
5	Extracellular vesicles in kidney disease. Nature Reviews Nephrology, 2022, 18, 499-513.	4.1	64
6	Differential Therapeutic Effect of Extracellular Vesicles Derived by Bone Marrow and Adipose Mesenchymal Stem Cells on Wound Healing of Diabetic Ulcers and Correlation to Their Cargoes. International Journal of Molecular Sciences, 2021, 22, 3851.	1.8	113
7	Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles, 2021, 10, e12093.	5.5	182
8	Mesenchymal Stem Cell-Derived Extracellular Vesicles Protect Human Corneal Endothelial Cells from Endoplasmic Reticulum Stress-Mediated Apoptosis. International Journal of Molecular Sciences, 2021, 22, 4930.	1.8	25
9	Glycol Chitosan Functionalized with a Gd(III) Chelate as a Redoxâ€responsive Magnetic Resonance Imaging Probe to Label Cell Embedding Alginate Capsules. Chemistry - A European Journal, 2021, 27, 12289-12293.	1.7	2
10	The Interplay between Histamine H4 Receptor and the Kidney Function: The Lesson from H4 Receptor Knockout Mice. Biomolecules, 2021, 11, 1517.	1.8	2
11	Surface Marker Expression in Small and Medium/Large Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Naive or Apoptotic Condition Using Orthogonal Techniques. Cells, 2021, 10, 2948.	1.8	22
12	Histamine in the kidneys: what is its role in renal pathophysiology?. British Journal of Pharmacology, 2020, 177, 503-515.	2.7	16
13	Extracellular Vesicles From Adipose Stem Cells Prevent Muscle Damage and Inflammation in a Mouse Model of Hind Limb Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 239-254.	1.1	63
14	HLSC-Derived Extracellular Vesicles Attenuate Liver Fibrosis and Inflammation in a Murine Model of Non-alcoholic Steatohepatitis. Molecular Therapy, 2020, 28, 479-489.	3.7	86
15	Urinary Extracellular Vesicles Carrying Klotho Improve the Recovery of Renal Function in an Acute Tubular Injury Model. Molecular Therapy, 2020, 28, 490-502.	3.7	64
16	Targeting IL-3R \hat{l} ± on tumor-derived endothelial cells blunts metastatic spread of triple-negative breast cancer via extracellular vesicle reprogramming. Oncogenesis, 2020, 9, 90.	2.1	30
17	Potential Applications of Extracellular Vesicles in Solid Organ Transplantation. Cells, 2020, 9, 369.	1.8	25
18	Extracellular vesicles from human liver stem cells inhibit renal cancer stem cellâ€derived tumor growth ⟨i⟩in vitro⟨/i⟩ and ⟨i⟩in vivo⟨/i⟩. International Journal of Cancer, 2020, 147, 1694-1706.	2.3	40

#	Article	IF	CITATIONS
19	Extracellular vesicles from human liver stem cells inhibit tumor angiogenesis. International Journal of Cancer, 2019, 144, 322-333.	2.3	48
20	Gadolinium-Labelled Cell Scaffolds to Follow-up Cell Transplantation by Magnetic Resonance Imaging. Journal of Functional Biomaterials, 2019, 10, 28.	1.8	6
21	Stem Cell-Derived Extracellular Vesicles and Kidney Regeneration. Cells, 2019, 8, 1240.	1.8	87
22	Mesenchymal stem cell–derived extracellular vesicles improve the molecular phenotype of isolated rat lungs during ischemia/reperfusion injury. Journal of Heart and Lung Transplantation, 2019, 38, 1306-1316.	0.3	52
23	Effect of Bilastine on Diabetic Nephropathy in DBA2/J Mice. International Journal of Molecular Sciences, 2019, 20, 2554.	1.8	5
24	Extracellular Vesicles and Carried miRNAs in the Progression of Renal Cell Carcinoma. International Journal of Molecular Sciences, 2019, 20, 1832.	1.8	38
25	Extracellular vesicles in onco-nephrology. Experimental and Molecular Medicine, 2019, 51, 1-8.	3.2	19
26	Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Scientific Reports, 2019, 9, 4468.	1.6	138
27	Histamine and diabetic nephropathy: an up-to-date overview. Clinical Science, 2019, 133, 41-54.	1.8	10
28	Histamine H 4 receptor antagonism prevents the progression of diabetic nephropathy in male DBA2/J mice. Pharmacological Research, 2018, 128, 18-28.	3.1	18
29	IL-3R-alpha blockade inhibits tumor endothelial cell-derived extracellular vesicle (EV)-mediated vessel formation by targeting the \hat{l}^2 -catenin pathway. Oncogene, 2018, 37, 1175-1191.	2.6	49
30	PDGF enhances the protective effect of adipose stem cell-derived extracellular vesicles in a model of acute hindlimb ischemia. Scientific Reports, 2018, 8, 17458.	1.6	27
31	Efficient Route to Label Mesenchymal Stromal Cell-Derived Extracellular Vesicles. ACS Omega, 2018, 3, 8097-8103.	1.6	15
32	Combining doxorubicin-nanobubbles and shockwaves for anaplastic thyroid cancer treatment: preclinical study in a xenograft mouse model. Endocrine-Related Cancer, 2017, 24, 275-286.	1.6	40
33	Serum-derived extracellular vesicles (EVs) impact on vascular remodeling and prevent muscle damage in acute hind limb ischemia. Scientific Reports, 2017, 7, 8180.	1.6	53
34	The Distinct Role of Extracellular Vesicles Derived from Normal and Cancer Stem Cells. Current Stem Cell Reports, 2017, 3, 218-224.	0.7	4
35	Adult Stem Cells and Extracellular Vesicles in Acute and Chronic Kidney Injury. Current Regenerative Medicine, 2017, 6, 2-15.	0.0	1
36	Stem cell extracellular vesicles and kidney injury. Stem Cell Investigation, 2017, 4, 90-90.	1.3	37

#	Article	IF	CITATIONS
37	Immunosuppressive role of extracellular vesicles: HLA-G, an important player. Annals of Translational Medicine, 2017, 5, 223223	0.7	8
38	Methodological Approaches to Study Histamine Pharmacology in the Kidney: From Cell Culture and Cell Imaging to Functional Assays and Electron Microscopy. Methods in Pharmacology and Toxicology, 2017, , 263-308.	0.1	0
39	Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation. Stem Cells International, 2016, 2016, 1-14.	1.2	21
40	Gadoliniumâ€Decorated Silica Microspheres as Redoxâ€Responsive MRI Probes for Applications in Cell Therapy Followâ€Up. Chemistry - A European Journal, 2016, 22, 7716-7720.	1.7	14
41	Human CD133+ Renal Progenitor Cells Induce Erythropoietin Production and Limit Fibrosis After Acute Tubular Injury. Scientific Reports, 2016, 6, 37270.	1.6	23
42	Histamine type 1-receptor activation by low dose of histamine undermines human glomerular slit diaphragm integrity. Pharmacological Research, 2016, 114, 27-38.	3.1	11
43	C-met inhibition blocks bone metastasis development induced by renal cancer stem cells. Oncotarget, 2016, 7, 45525-45537.	0.8	24
44	Ex vivo manipulation of bone marrow cells to rescue uremia-induced dysfunction for autologous therapy. Stem Cell Research and Therapy, 2015, 6, 117.	2.4	2
45	Role of HLA-G and extracellular vesicles in renal cancer stem cell-induced inhibition of dendritic cell differentiation. BMC Cancer, 2015, 15, 1009.	1.1	100
46	Histamine receptor expression in human renal tubules: a comparative pharmacological evaluation. Inflammation Research, 2015, 64, 261-270.	1.6	18
47	Sunitinib but not VEGF blockade inhibits cancer stem cell endothelial differentiation. Oncotarget, 2015, 6, 11295-11309.	0.8	30
48	Protective effect and localization by optical imaging of human renal CD133 ⁺ progenitor cells in an acute kidney injury model. Physiological Reports, 2014, 2, e12009.	0.7	37
49	Oncogenic micro-RNAs and Renal Cell Carcinoma. Frontiers in Oncology, 2014, 4, 49.	1.3	55
50	Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. International Journal of Molecular Medicine, 2014, 33, 1055-1063.	1.8	277
51	Human liver stem cells and derived extracellular vesicles improve recovery in a murine model of acute kidney injury. Stem Cell Research and Therapy, 2014, 5, 124.	2.4	86
52	Primary breast cancer stem-like cells metastasise to bone, switch phenotype and acquire a bone tropism signature. British Journal of Cancer, 2013, 108, 2525-2536.	2.9	31
53	Human liver stem cells improve liver injury in a model of fulminant liver failure. Hepatology, 2013, 57, 311-319.	3.6	86
54	Overexpression of histamine H4 receptors in the kidney of diabetic rat. Inflammation Research, 2013, 62, 357-365.	1.6	22

#	Article	IF	CITATIONS
55	Microvesicles Derived from Human Bone Marrow Mesenchymal Stem Cells Inhibit Tumor Growth. Stem Cells and Development, 2013, 22, 758-771.	1.1	264
56	Hypoxia modulates the undifferentiated phenotype of human renal inner medullary CD133 ⁺ progenitors through Oct4/miR-145 balance. American Journal of Physiology - Renal Physiology, 2012, 302, F116-F128.	1.3	71
57	Endothelial Progenitor Cell-Derived Microvesicles Improve Neovascularization in a Murine Model of Hindlimb Ischemia. International Journal of Immunopathology and Pharmacology, 2012, 25, 75-85.	1.0	149
58	Histone Deacetylase Inhibition Modulates E-Cadherin Expression and Suppresses Migration and Invasion of Anaplastic Thyroid Cancer Cells. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1150-E1159.	1.8	41
59	Protective effects of peroxisome proliferatorâ€activated receptor agonists on human podocytes: proposed mechanisms of action. British Journal of Pharmacology, 2012, 167, 641-653.	2.7	27
60	Microvesicles Derived from Mesenchymal Stem Cells Enhance Survival in a Lethal Model of Acute Kidney Injury. PLoS ONE, 2012, 7, e33115.	1.1	526
61	Cytotoxic activity of the histone deacetylase inhibitor panobinostat (LBH589) in anaplastic thyroid cancer <i>in vitro</i> and <i>in vivo</i> International Journal of Cancer, 2012, 130, 694-704.	2.3	47
62	The subtypes of peroxisome proliferatorâ€activated receptors expressed by human podocytes and their role in decreasing podocyte injury. British Journal of Pharmacology, 2011, 162, 111-125.	2.7	39
63	Microvesicles Released from Human Renal Cancer Stem Cells Stimulate Angiogenesis and Formation of Lung Premetastatic Niche. Cancer Research, 2011, 71, 5346-5356.	0.4	777
64	Tumor exploits alternative strategies to achieve vascularization. FASEB Journal, 2011, 25, 2874-2882.	0.2	89
65	Exosome/microvesicle-mediated epigenetic reprogramming of cells. American Journal of Cancer Research, 2011, 1, 98-110.	1.4	206
66	Combined Delivery and Magnetic Resonance Imaging of Neural Cell Adhesion Molecule–Targeted Doxorubicin-Containing Liposomes in Experimentally Induced Kaposi's Sarcoma. Cancer Research, 2010, 70, 2180-2190.	0.4	90
67	Stem Cells Derived from Human Amniotic Fluid Contribute to Acute Kidney Injury Recovery. American Journal of Pathology, 2010, 177, 2011-2021.	1.9	119
68	Mesenchymal Stem Cell-Derived Microvesicles Protect Against Acute Tubular Injury. Journal of the American Society of Nephrology: JASN, 2009, 20, 1053-1067.	3.0	1,144
69	Endothelial cell differentiation of human breast tumour stem/progenitor cells. Journal of Cellular and Molecular Medicine, 2009, 13, 309-319.	1.6	131
70	Isolation and Characterization of Resident Mesenchymal Stem Cells in Human Glomeruli. Stem Cells and Development, 2009, 18, 867-880.	1.1	110
71	SCA-1 Identifies the Tumor-Initiating Cells in Mammary Tumors of BALB-neuT Transgenic Mice. Neoplasia, 2008, 10, 1433-1443.	2.3	75
72	Identification of a tumorâ€initiating stem cell population in human renal carcinomas. FASEB Journal, 2008, 22, 3696-3705.	0.2	304

#	Article	IF	CITATION
73	Arachidonic Acid–Induced Ca2+ Entry Is Involved in Early Steps of Tumor Angiogenesis. Molecular Cancer Research, 2008, 6, 535-545.	1.5	69
74	Targeting of human renal tumor-derived endothelial cells with peptides obtained by phage display. Journal of Molecular Medicine, 2007, 85, 897-906.	1.7	17
75	CD133+ Renal Progenitor Cells Contribute to Tumor Angiogenesis. American Journal of Pathology, 2006, 169, 2223-2235.	1.9	161
76	Neural-cell adhesion molecule (NCAM) expression by immature and tumor-derived endothelial cells favors cell organization into capillary-like structures. Experimental Cell Research, 2006, 312, 913-924.	1.2	46
77	Magnetic Resonance Visualization of Tumor Angiogenesis by Targeting Neural Cell Adhesion Molecules with the Highly Sensitive Gadolinium-Loaded Apoferritin Probe. Cancer Research, 2006, 66, 9196-9201.	0.4	132
78	Isolation and characterization of human breast tumor-derived endothelial cells. Oncology Reports, 2006, 15, 381-6.	1.2	64
79	Isolation of Renal Progenitor Cells from Adult Human Kidney. American Journal of Pathology, 2005, 166, 545-555.	1.9	578