
Donald P King

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5726306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a TaqMan® PCR assay with internal amplification control for the detection of African swine fever virus. Journal of Virological Methods, 2003, 107, 53-61.	1.0	392
2	A review of RT-PCR technologies used in veterinary virology and disease control: Sensitive and specific diagnosis of five livestock diseases notifiable to the World Organisation for Animal Health. Veterinary Microbiology, 2009, 139, 1-23.	0.8	183
3	Transmission Pathways of Foot-and-Mouth Disease Virus in the United Kingdom in 2007. PLoS Pathogens, 2008, 4, e1000050.	2.1	178
4	Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 887-895.	1.2	150
5	Implementation of a one-step real-time RT-PCR protocol for diagnosis of foot-and-mouth disease. Journal of Virological Methods, 2007, 143, 81-85.	1.0	144
6	Beyond the Consensus: Dissecting Within-Host Viral Population Diversity of Foot-and-Mouth Disease Virus by Using Next-Generation Genome Sequencing. Journal of Virology, 2011, 85, 2266-2275.	1.5	127
7	Molecular Epidemiology of the Foot-and-Mouth Disease Virus Outbreak in the United Kingdom in 2001. Journal of Virology, 2006, 80, 11274-11282.	1.5	125
8	Detection of African swine fever virus by loop-mediated isothermal amplification. Journal of Virological Methods, 2010, 164, 68-74.	1.0	108
9	A Bayesian Inference Framework to Reconstruct Transmission Trees Using Epidemiological and Genetic Data. PLoS Computational Biology, 2012, 8, e1002768.	1.5	104
10	A real time RT-PCR assay for the specific detection of Peste des petits ruminants virus. Journal of Virological Methods, 2011, 171, 401-404.	1.0	83
11	Detection of Foot-and-Mouth Disease Virus: Comparative Diagnostic Sensitivity of Two Independent Real-Time Reverse Transcription-Polymerase Chain Reaction Assays. Journal of Veterinary Diagnostic Investigation, 2006, 18, 93-97.	0.5	82
12	Development and laboratory validation of a lateral flow device for the detection of foot-and-mouth disease virus in clinical samples. Journal of Virological Methods, 2009, 155, 10-17.	1.0	77
13	VP1 sequencing protocol for foot and mouth disease virus molecular epidemiology. OIE Revue Scientifique Et Technique, 2016, 35, 741-755.	0.5	76
14	Southeast Asian Foot-and-Mouth Disease Viruses in Eastern Asia. Emerging Infectious Diseases, 2012, 18, 499-501.	2.0	73
15	A one-step reverse transcriptase loop-mediated isothermal amplification assay for simple and rapid detection of swine vesicular disease virus. Journal of Virological Methods, 2008, 147, 188-193.	1.0	69
16	Understanding the transmission of foot-and-mouth disease virus at different scales. Current Opinion in Virology, 2018, 28, 85-91.	2.6	68
17	Waves of endemic foot-and-mouth disease in eastern Africa suggest feasibility of proactive vaccination approaches. Nature Ecology and Evolution, 2018, 2, 1449-1457.	3.4	66
18	MORBILLIVIRUS INFECTION IN STRANDED COMMON DOLPHINS FROM THE PACIFIC OCEAN. Journal of Wildlife Diseases, 1998, 34, 771-776.	0.3	64

#	Article	IF	CITATIONS
19	Otarine herpesvirus-1: a novel gammaherpesvirus associated with urogenital carcinoma in California sea lions (Zalophus californianus). Veterinary Microbiology, 2002, 86, 131-137.	0.8	64
20	A universal protocol to generate consensus level genome sequences for foot-and-mouth disease virus and other positive-sense polyadenylated RNA viruses using the Illumina MiSeq. BMC Genomics, 2014, 15, 828.	1.2	64
21	Development and Validation of a Multiplex, Real-Time RT PCR Assay for the Simultaneous Detection of Classical and African Swine Fever Viruses. PLoS ONE, 2013, 8, e71019.	1.1	61
22	Preliminary Validation of Direct Detection of Foot-And-Mouth Disease Virus within Clinical Samples Using Reverse Transcription Loop-Mediated Isothermal Amplification Coupled with a Simple Lateral Flow Device for Detection. PLoS ONE, 2014, 9, e105630.	1.1	60
23	Reconstruction of the Transmission History of RNA Virus Outbreaks Using Full Genome Sequences: Foot-and-Mouth Disease Virus in Bulgaria in 2011. PLoS ONE, 2012, 7, e49650.	1.1	57
24	Reconstructing the evolutionary history of pandemic foot-and-mouth disease viruses: the impact of recombination within the emerging O/ME-SA/Ind-2001 lineage. Scientific Reports, 2018, 8, 14693.	1.6	57
25	Evolution of foot-and-mouth disease virus intra-sample sequence diversity during serial transmission in bovine hosts. Veterinary Research, 2013, 44, 12.	1.1	56
26	Foot-and-Mouth Disease Virus Serotype A in Egypt. Emerging Infectious Diseases, 2007, 13, 1593-1596.	2.0	56
27	Development and evaluation of multiplex RT-LAMP assays for rapid and sensitive detection of foot-and-mouth disease virus. Journal of Virological Methods, 2013, 192, 18-24.	1.0	54
28	Outbreaks of Footâ€andâ€Mouth Disease in Libya and Saudi Arabia During 2013 Due to an Exotic O/ <scp>ME</scp> ― <scp>SA</scp> /Indâ€2001 Lineage Virus. Transboundary and Emerging Diseases, 2016, 63, e431-5.	1.3	53
29	Evaluation of Two Lyophilized Molecular Assays to Rapidly Detect Foot-and-Mouth Disease Virus Directly from Clinical Samples in Field Settings. Transboundary and Emerging Diseases, 2017, 64, 861-871.	1.3	50
30	Performance of Real-Time Reverse Transcription Polymerase Chain Reaction for the Detection of Foot-and-Mouth Disease Virus during Field Outbreaks in the United Kingdom in 2007. Journal of Veterinary Diagnostic Investigation, 2009, 21, 321-330.	0.5	49
31	Phylogeography of foot-and-mouth disease virus types O and A in Malaysia and surrounding countries. Infection, Genetics and Evolution, 2011, 11, 320-328.	1.0	49
32	Distinguishing low frequency mutations from RT-PCR and sequence errors in viral deep sequencing data. BMC Genomics, 2015, 16, 229.	1.2	44
33	Development of tailored real-time RT-PCR assays for the detection and differentiation of serotype O, A and Asia-1 foot-and-mouth disease virus lineages circulating in the Middle East. Journal of Virological Methods, 2014, 207, 146-153.	1.0	41
34	Direct detection and characterization of foot-and-mouth disease virus in East Africa using a field-ready real-time PCR platform. Transboundary and Emerging Diseases, 2018, 65, 221-231.	1.3	39
35	Validation of a high-throughput real-time polymerase chain reaction assay for the detection of capripoxviral DNA. Journal of Virological Methods, 2012, 179, 419-422.	1.0	38
36	Multiple introductions of serotype O foot-and-mouth disease viruses into East Asia in 2010–2011. Veterinary Research, 2013, 44, 76.	1.1	37

#	Article	IF	CITATIONS
37	Development of a universal RT-PCR for amplifying and sequencing the leader and capsid-coding region of foot-and-mouth disease virus. Journal of Virological Methods, 2013, 189, 70-76.	1.0	35
38	The history of foot-and-mouth disease virus serotype C: the first known extinct serotype?. Virus Evolution, 2021, 7, .	2.2	35
39	Increase of Î ³ δT Lymphocytes in Murine Lungs Occurs during Recovery from Pulmonary Infection by Nocardia asteroides. Infection and Immunity, 2001, 69, 6165-6171.	1.0	34
40	Comparative sequence analysis of representative foot-and-mouth disease virus genomes from Southeast Asia. Virus Genes, 2011, 43, 41-45.	0.7	34
41	Novel antibody binding determinants on the capsid surface of serotype O foot-and-mouth disease virus. Journal of General Virology, 2014, 95, 1104-1116.	1.3	34
42	Challenges of Generating and Maintaining Protective Vaccine-Induced Immune Responses for Foot-and-Mouth Disease Virus in Pigs. Frontiers in Veterinary Science, 2016, 3, 102.	0.9	34
43	A traditional evolutionary history of foot-and-mouth disease viruses in Southeast Asia challenged by analyses of non-structural protein coding sequences. Scientific Reports, 2018, 8, 6472.	1.6	34
44	Utility of automated real-time RT-PCR for the detection of foot-and-mouth disease virus excreted in milk. Veterinary Research, 2006, 37, 121-132.	1.1	34
45	Evaluation of real-time reverse transcription polymerase chain reaction assays for the detection of swine vesicular disease virus. Journal of Virological Methods, 2004, 116, 169-176.	1.0	33
46	Molecular Identification of a Novel Deltaproteobacterium as the Etiologic Agent of Epizootic Bovine Abortion (Foothill Abortion). Journal of Clinical Microbiology, 2005, 43, 604-609.	1.8	33
47	Genome Sequences of SAT 2 Foot-and-Mouth Disease Viruses from Egypt and Palestinian Autonomous Territories (Gaza Strip). Journal of Virology, 2012, 86, 8901-8902.	1.5	33
48	Rapid detection of foot-and-mouth disease virus using a field-portable nucleic acid extraction and real-time PCR amplification platform. Veterinary Journal, 2012, 193, 67-72.	0.6	33
49	Genetic basis of antigenic variation in foot-and-mouth disease serotype A viruses from the Middle East. Vaccine, 2014, 32, 631-638.	1.7	33
50	Defining the relative performance of isothermal assays that can be used for rapid and sensitive detection of foot-and-mouth disease virus. Journal of Virological Methods, 2017, 249, 102-110.	1.0	33
51	Emergence of an exotic strain of serotype O foot-and-mouth disease virus O/ME-SA/Ind-2001d in South-East Asia in 2015. Transboundary and Emerging Diseases, 2018, 65, e104-e112.	1.3	33
52	Next-Generation Sequencing in Veterinary Medicine: How Can the Massive Amount of Information Arising from High-Throughput Technologies Improve Diagnosis, Control, and Management of Infectious Diseases?. Methods in Molecular Biology, 2015, 1247, 415-436.	0.4	33
53	Efficacy of a high potency O 1 Manisa foot-and-mouth disease vaccine in cattle against heterologous challenge with a field virus from the O/ME-SA/Ind-2001 lineage collected in North Africa. Vaccine, 2017, 35, 2761-2765.	1.7	32
54	Development of a novel real-time RT-PCR assay to detect Seneca Valley virus-1 associated with emerging cases of vesicular disease in pigs. Journal of Virological Methods, 2017, 239, 34-37.	1.0	32

#	Article	IF	CITATIONS
55	Mass Die-Off of Saiga Antelopes, Kazakhstan, 2015. Emerging Infectious Diseases, 2019, 25, 1169-1176.	2.0	32
56	Development and Initial Results of a Low Cost, Disposable, Point-of-Care Testing Device for Pathogen Detection. IEEE Transactions on Biomedical Engineering, 2011, 58, 805-808.	2.5	31
57	Detection of foot-and-mouth disease virus by nucleic acid sequence-based amplification (NASBA). Veterinary Microbiology, 2008, 126, 101-110.	0.8	29
58	Diagnostic Evaluation of Multiplexed Reverse Transcription-PCR Microsphere Array Assay for Detection of Foot-and-Mouth and Look-Alike Disease Viruses. Journal of Clinical Microbiology, 2008, 46, 1081-1089.	1.8	29
59	Observing micro-evolutionary processes of viral populations at multiple scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120203.	1.8	29
60	Utility of recombinant integrin $\hat{l}\pm v \hat{l}^2 6$ as a capture reagent in immunoassays for the diagnosis of foot-and-mouth disease. Journal of Virological Methods, 2005, 127, 69-79.	1.0	28
61	Challenges and prospects for the control of foot-and-mouth disease: an African perspective. Veterinary Medicine: Research and Reports, 2014, 5, 119.	0.4	28
62	Development and evaluation of tailored specific real-time RT-PCR assays for detection of foot-and-mouth disease virus serotypes circulating in East Africa. Journal of Virological Methods, 2016, 237, 114-120.	1.0	28
63	Molecular cloning and sequencing of interleukin 6 cDNA fragments from the harbor seal (Phoca) Tj ETQq1 1 0.78 Immunogenetics, 1996, 43, 190-195.	4314 rgBT 1.2	/Overlock 1 27
64	Detection of capripoxvirus DNA using a novel loop-mediated isothermal amplification assay. BMC Veterinary Research, 2013, 9, 90.	0.7	27
65	The transmission of phocine herpesvirus-1 in rehabilitating and free-ranging Pacific harbor seals (Phoca vitulina) in California. Veterinary Microbiology, 2004, 103, 131-141.	0.8	26
66	Ontogeny of systemic cellular immunity in the neonatal pig: Correlation with the development of post-weaning multisystemic wasting syndrome. Veterinary Immunology and Immunopathology, 2007, 119, 254-268.	0.5	26
67	Efficacy of a high-potency multivalent foot-and-mouth disease virus vaccine in cattle against heterologous challenge with a field virus from the emerging A/ASIA/G-VII lineage. Vaccine, 2018, 36, 1901-1907.	1.7	26
68	Foot-and-Mouth Disease in the Middle East Caused by an A/ASIA/G-VII Virus Lineage, 2015–2016. Emerging Infectious Diseases, 2018, 24, 1073-1078.	2.0	26
69	Harbor seal (Phoca vitulina) C-reactive protein (C-RP): purification, characterization of specific monoclonal antibodies and development of an immuno-assay to measure serum C-RP concentrations. Veterinary Immunology and Immunopathology, 1997, 59, 151-162.	0.5	25
70	Phylogenomics and Molecular Evolution of Foot-and-Mouth Disease Virus. Molecules and Cells, 2011, 31, 413-422.	1.0	24
71	Phylodynamics of foot-and-mouth disease virus O/PanAsia in Vietnam 2010–2014. Veterinary Research, 2017, 48, 24.	1.1	24
72	Evaluation of a polyvalent foot-and-mouth disease virus vaccine containing A Saudi-95 against field challenge on large-scale dairy farms in Saudi Arabia with the emerging A/ASIA/G-VII viral lineage. Vaccine, 2017, 35, 6850-6857.	1.7	24

#	Article	IF	CITATIONS
73	Full Genome Sequencing Reveals New Southern African Territories Genotypes Bringing Us Closer to Understanding True Variability of Foot-and-Mouth Disease Virus in Africa. Viruses, 2018, 10, 192.	1.5	24
74	DetectiV: visualization, normalization and significance testing for pathogen-detection microarray data. Genome Biology, 2007, 8, R190.	13.9	23
75	Evaluation of a novel proximity ligation assay for the sensitive and rapid detection of foot-and-mouth disease virus. Veterinary Microbiology, 2008, 127, 227-236.	0.8	23
76	Recent spread of footâ€andâ€mouth disease in the Far East. Veterinary Record, 2010, 166, 569-570.	0.2	23
77	Within-Host Recombination in the Foot-and-Mouth Disease Virus Genome. Viruses, 2018, 10, 221.	1.5	23
78	Molecular cloning and sequencing of interleukin 6 cDNA fragments from the harbor seal (Phoca) Tj ETQq0 0 0 rgE Immunogenetics, 1996, 43, 190-195.	3T /Overloo 1.2	ck 10 Tf 50 5 22
79	Phylodynamic reconstruction of O CATHAY topotype foot-and-mouth disease virus epidemics in the Philippines. Veterinary Research, 2014, 45, 90.	1.1	22
80	Use of an internal standard in a closed one-tube RT-PCR for the detection of equine arteritis virus RNA with fluorescent probes. Veterinary Research, 2003, 34, 165-176.	1.1	22
81	Accumulation of nucleotide substitutions occurring during experimental transmission of foot-and-mouth disease virus. Journal of General Virology, 2013, 94, 108-119.	1.3	22
82	Identification, characterisation, and measurement of immunoglobulin concentrations in grey (Haliocherus grypus) and common (Phoca vitulina) seals. Developmental and Comparative Immunology, 1994, 18, 433-442.	1.0	21
83	Molecular Characterization of Footâ€andâ€Mouth Disease Viruses Collected in Tanzania Between 1967 and 2009. Transboundary and Emerging Diseases, 2015, 62, e19-29.	1.3	21
84	Expression and functional characterization of killer whale (Orcinus orca) interleukin-6 (IL-6) and development of a competitive immunoassay. Veterinary Immunology and Immunopathology, 2003, 93, 69-79.	0.5	20
85	Reconstructing the origin and transmission dynamics of the 1967–68 foot-and-mouth disease epidemic in the United Kingdom. Infection, Genetics and Evolution, 2013, 20, 230-238.	1.0	20
86	Development of a reverse transcription loop-mediated isothermal amplification assay for the detection of vesicular stomatitis New Jersey virus: Use of rapid molecular assays to differentiate between vesicular disease viruses. Journal of Virological Methods, 2016, 234, 123-131.	1.0	20
87	Genome Sequences of Foot-and-Mouth Disease Virus O/ME-SA/Ind-2001 Lineage from Outbreaks in Libya, Saudi Arabia, and Bhutan during 2013. Genome Announcements, 2014, 2, .	0.8	19
88	Genomics and outbreaks: foot and mouth disease. OIE Revue Scientifique Et Technique, 2016, 35, 175-189.	0.5	19
89	Detection of Mustelid Herpesvirus-1 Infected European Badgers (Meles meles) in the British Isles. Journal of Wildlife Diseases, 2004, 40, 99-102.	0.3	18
90	Development and evaluation of a novel real-time RT-PCR to detect foot-and-mouth disease viruses from the emerging A/ASIA/G-VII lineage. Journal of Virological Methods, 2018, 252, 37-41.	1.0	18

#	Article	IF	CITATIONS
91	Detection of foot-and-mouth disease virus in milk samples by real-time reverse transcription polymerase chain reaction: Optimisation and evaluation of a high-throughput screening method with potential for disease surveillance. Veterinary Microbiology, 2018, 223, 189-194.	0.8	18
92	Recovery of Viral RNA and Infectious Foot-and-Mouth Disease Virus from Positive Lateral-Flow Devices. PLoS ONE, 2014, 9, e109322.	1.1	18
93	Identification of the etiologic agent of epizootic bovine abortion in field-collected Ornithodoros coriaceus Koch ticks. Veterinary Microbiology, 2007, 120, 320-327.	0.8	17
94	Analysis of Foot-and-mouth disease virus nucleotide sequence variation within naturally infected epithelium. Virus Research, 2009, 140, 199-204.	1.1	17
95	In-vitro and in-vivo phenotype of type Asia 1 foot-and-mouth disease viruses utilizing two non-RGD receptor recognition sites. BMC Microbiology, 2011, 11, 154.	1.3	17
96	Investigating intra-host and intra-herd sequence diversity of foot-and-mouth disease virus. Infection, Genetics and Evolution, 2016, 44, 286-292.	1.0	17
97	The evolution and phylodynamics of serotype A and SAT2 foot-and-mouth disease viruses in endemic regions of Africa. Scientific Reports, 2019, 9, 5614.	1.6	17
98	Partial characterization of a novel gammaherpesvirus isolated from a European badger (Meles meles). Journal of General Virology, 2002, 83, 1325-1330.	1.3	17

#	Article	IF	CITATIONS
109	Review of epidemiological risk models for foot-and-mouth disease: Implications for prevention strategies with a focus on Africa. PLoS ONE, 2018, 13, e0208296.	1.1	15
110	Ontogeny of humoral immunity in northern elephant seal (Mirounga angustirostris) neonates. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 121, 363-368.	0.7	14
111	THE APPLICATION OF IMMUNO-ASSAYS FOR SEROLOGICAL DETECTION OF MORBILLIVIRUS EXPOSURE IN FREE RANGING HARBOR SEALS (PHOCA VITULINA) AND SEA OTTERS (ENHYDRA LUTRIS) FROM THE WESTERN COAST OF THE UNITED STATES. Marine Mammal Science, 1999, 15, 601-608.	0.9	14
112	Molecular cloning and sequencing of the low-affinity IgE receptor (CD23) for horse and cattle. Veterinary Immunology and Immunopathology, 2000, 73, 323-329.	0.5	14
113	Use of an internal standard in a TaqMan® nested reverse transcription-polymerase chain reaction for the detection of bovine viral diarrhoea virus. Veterinary Microbiology, 2003, 96, 357-366.	0.8	14
114	Pan-serotypic detection of foot-and-mouth disease virus by RT linear-after-the-exponential PCR. Molecular and Cellular Probes, 2010, 24, 250-255.	0.9	14
115	The impact of within-herd genetic variation upon inferred transmission trees for foot-and-mouth disease virus. Infection, Genetics and Evolution, 2015, 32, 440-448.	1.0	14
116	A multiplex reverse transcription PCR and automated electronic microarray assay for detection and differentiation of seven viruses affecting swine. Transboundary and Emerging Diseases, 2018, 65, e272-e283.	1.3	14
117	Opportunities for enhanced surveillance of footâ€andâ€mouth disease in endemic settings using milk samples. Transboundary and Emerging Diseases, 2019, 66, 1405-1410.	1.3	14
118	Footâ€andâ€mouth disease outbreaks due to an exotic serotype Asia 1 virus in Myanmar in 2017. Transboundary and Emerging Diseases, 2019, 66, 1067-1072.	1.3	14
119	Evolutionary and Ecological Drivers Shape the Emergence and Extinction of Foot-and-Mouth Disease Virus Lineages. Molecular Biology and Evolution, 2021, 38, 4346-4361.	3.5	14
120	Footâ€andâ€mouth disease in Bulgaria. Veterinary Record, 2011, 168, 247-247.	0.2	13
121	Molecular characterization of footâ€andâ€mouth disease viruses circulating in Ethiopia between 2008 and 2019. Transboundary and Emerging Diseases, 2020, 67, 2983-2992.	1.3	13
122	Technological advances in veterinary diagnostics: opportunities to deploy rapid decentralised tests to detect pathogens affecting livestock. OIE Revue Scientifique Et Technique, 2017, 36, 479-498.	0.5	13
123	Rapid, sensitive and effective diagnostic tools for foot-and-mouth disease virus in Africa. Onderstepoort Journal of Veterinary Research, 2014, 81, E1-5.	0.6	12
124	Exploiting serological data to understand the epidemiology of foot-and-mouth disease virus serotypes circulating in Libya. Open Veterinary Journal, 2017, 7, 1.	0.3	12
125	Outbreak investigations and molecular characterization of foot-and-mouth disease viruses circulating in south-west Niger. Transboundary and Emerging Diseases, 2018, 65, 146-157.	1.3	12
126	Footâ€andâ€mouth disease outbreaks due to an exotic virus serotype A lineage (A/AFRICA/Gâ€IV) in Algeria in 2017. Transboundary and Emerging Diseases, 2019, 66, 7-13.	1.3	12

#	Article	IF	CITATIONS
127	Full Sequencing of Viral Genomes: Practical Strategies Used for the Amplification and Characterization of Foot-and-Mouth Disease Virus. Methods in Molecular Biology, 2009, 551, 217-230.	0.4	12
128	Evaluation of automated nucleic acid extraction methods for virus detection in a multicenter comparative trial. Journal of Virological Methods, 2009, 155, 87-90.	1.0	11
129	Truncated Bovine Integrin Alpha-v/Beta-6 as a Universal Capture Ligand for FMD Diagnosis. PLoS ONE, 2016, 11, e0160696.	1.1	11
130	Detection of Capripoxvirus DNA Using a Field-Ready Nucleic Acid Extraction and Real-Time PCR Platform. Transboundary and Emerging Diseases, 2017, 64, 994-997.	1.3	11
131	Inactivation of foot-and-mouth disease virus A/IRN/8/2015 with commercially available lysis buffers. Journal of Virological Methods, 2020, 278, 113835.	1.0	11
132	Integrin sub-unit expression in cell cultures used for the diagnosis of foot-and-mouth disease. Veterinary Immunology and Immunopathology, 2011, 140, 259-265.	0.5	10
133	Pan-serotypic detection of foot-and-mouth disease virus using a minor groove binder probe reverse transcription polymerase chain reaction assay. Journal of Virological Methods, 2011, 174, 117-119.	1.0	10
134	Patterns of Foot-and-Mouth Disease Virus Distribution in Africa. , 2014, , 21-38.		10
135	Genome Sequence of Foot-and-Mouth Disease Virus Serotype O Isolated from Morocco in 2015. Genome Announcements, 2016, 4, .	0.8	10
136	Foot-and-Mouth Disease Surveillance Using Pooled Milk on a Large-Scale Dairy Farm in an Endemic Setting. Frontiers in Veterinary Science, 2020, 7, 264.	0.9	10
137	Immunogenicity of imported foot-and-mouth vaccines in different species in Mongolia. Vaccine, 2020, 38, 1708-1714.	1.7	10
138	Footâ€andâ€mouth disease viruses of the O/MEâ€SA/Indâ€2001e sublineage in Pakistan. Transboundary and Emerging Diseases, 2021, 68, 3126-3135.	1.3	10
139	Multiplex RT-PCR and Automated Microarray for Detection of Eight Bovine Viruses. Transboundary and Emerging Diseases, 2017, 64, 1929-1934.	1.3	9
140	A Systematic Evaluation of High-Throughput Sequencing Approaches to Identify Low-Frequency Single Nucleotide Variants in Viral Populations. Viruses, 2020, 12, 1187.	1.5	9
141	Genome Sequences of Foot-and-Mouth Disease Virus O/ME-SA/Ind-2001e Strains Isolated in Pakistan. Microbiology Resource Announcements, 2020, 9, .	0.3	9
142	Sequence analysis of the 5′ untranslated region of swine vesicular disease virus reveals block deletions between the end of the internal ribosomal entry site and the initiation codon. Journal of General Virology, 2005, 86, 2753-2761.	1.3	8
143	Complete Genome Sequence of a Serotype A Foot-and-Mouth Disease Virus from an Outbreak in Saudi Arabia during 2015. Genome Announcements, 2016, 4, .	0.8	8
144	Rapid and simple detection of foot-and-mouth disease virus: Evaluation of a cartridge-based molecular detection system for use in basic laboratories. Transboundary and Emerging Diseases, 2018, 65, 578-584.	1.3	8

#	Article	IF	CITATIONS
145	Footâ€andâ€mouth disease outbreaks in captive scimitarâ€horned oryx (<i>Oryx dammah</i>). Transboundary and Emerging Diseases, 2020, 67, 1716-1724.	1.3	8
146	A Vaccine Based on the A/ASIA/G-VII Lineage of Foot-and-Mouth Disease Virus Offers Low Levels of Protection against Circulating Viruses from the A/ASIA/Iran-05 lineage. Viruses, 2022, 14, 97.	1.5	8
147	New technologies to diagnose and monitor infectious diseases of livestock: Challenges for sub-Saharan Africa. Onderstepoort Journal of Veterinary Research, 2012, 79, 456.	0.6	7
148	Evaluation of Cell Lines for the Isolation of Foot-and-Mouth Disease Virus and Other Viruses Causing Vesicular Disease. Frontiers in Veterinary Science, 2020, 7, 426.	0.9	7
149	A vaccine-matching assessment of different genetic variants of serotype O foot-and-mouth disease virus isolated in Ethiopia between 2011 and 2014. Archives of Virology, 2020, 165, 1749-1757.	0.9	7
150	The first detection of a serotype O footâ€andâ€mouth disease virus in Namibia. Transboundary and Emerging Diseases, 2022, 69, .	1.3	7
151	Cross-Serotype Reactivity of ELISAs Used to Detect Antibodies to the Structural Proteins of Foot-and-Mouth Disease Virus. Viruses, 2022, 14, 1495.	1.5	7
152	Cross-Protection Induced by a A/MAY/97 Emergency Vaccine Against Intra-Serotype Heterologous Challenge with a Foot-and-Mouth Disease Virus from the A/ASIA/G-VII Lineage. Vaccines, 2020, 8, 24.	2.1	6
153	A thiazepino[4,5-a]benzimidazole derivative hampers the RNA replication of Eurasian serotypes of foot-and-mouth disease virus. Biochemical and Biophysical Research Communications, 2014, 455, 378-381.	1.0	5
154	Combining a Universal Capture Ligand and Pan-Serotype Monoclonal Antibody to Develop a Pan-Serotype Lateral Flow Strip Test for Foot-and-Mouth Disease Virus Detection. Viruses, 2022, 14, 785.	1.5	5
155	Identification of diffusion routes of O/EAâ€3 topotype of footâ€andâ€mouth disease virus in Africa and Western Asia between 1974 and 2019 – a phylogeographic analysis. Transboundary and Emerging Diseases, 2022, 69, .	1.3	5
156	The RNA pseudoknots in foot-and-mouth disease virus are dispensable for genome replication, but essential for the production of infectious virus. PLoS Pathogens, 2022, 18, e1010589.	2.1	5
157	Molecular survey for foot-and-mouth disease virus in livestock in Tanzania, 2008–2013. Onderstepoort Journal of Veterinary Research, 2014, 81, E1-6.	0.6	4
158	Genome Sequences of Antigenically Distinct Serotype O Foot-and-Mouth Disease Viruses from Pakistan. Microbiology Resource Announcements, 2019, 8, .	0.3	4
159	Foot-and-mouth disease in Southern Ghana: occurrence and molecular characterization of circulating viruses. Tropical Animal Health and Production, 2019, 51, 1667-1677.	0.5	4
160	GoPrime: Development of an In Silico Framework to Predict the Performance of Real-Time PCR Primers and Probes Using Foot-and-Mouth Disease Virus as a Model. Pathogens, 2020, 9, 303.	1.2	4
161	Generation and characterisation of recombinant FMDV antibodies: Applications for advancing diagnostic and laboratory assays. PLoS ONE, 2018, 13, e0201853.	1.1	3
162	Inter-laboratory comparison of 2 ELISA kits used for foot-and-mouth disease virus nonstructural protein serology. Journal of Veterinary Diagnostic Investigation, 2020, 32, 933-937.	0.5	3

#	Article	IF	CITATIONS
163	Utilizing milk from pooling facilities as a novel approach for footâ€andâ€mouth disease surveillance. Transboundary and Emerging Diseases, 2020, 67, 1532-1542.	1.3	3
164	Footâ€∎ndâ€mouth disease virus infection in the domestic dog (Canis lupus familiaris), Iran. BMC Veterinary Research, 2021, 17, 63.	0.7	3
165	Understanding what shapes disease control: An historical analysis of foot-and-mouth disease in Kenya. Preventive Veterinary Medicine, 2021, 190, 105315.	0.7	3
166	Mutagenesis Mapping of RNA Structures within the Foot-and-Mouth Disease Virus Genome Reveals Functional Elements Localized in the Polymerase (3D ^{pol})-Encoding Region. MSphere, 2021, 6, e0001521.	1.3	3
167	Non-discriminatory Exclusion Testing as a Tool for the Early Detection of Foot-and-Mouth Disease Incursions. Frontiers in Veterinary Science, 2020, 7, 552670.	0.9	2
168	Characterization of Foot-and-Mouth Disease Viruses in Zambia-Implications for the Epidemiology of the Disease in Southern Africa. Viruses, 2021, 13, 2195.	1.5	2
169	Genotyping of footâ€andâ€mouth disease viruses collected in Sudan between 2009 and 2018. Transboundary and Emerging Diseases, 2022, 69, .	1.3	2
170	Toward the calibration of serological assays using sera collected from cattle and sheep following a single dose of foot-and-mouth disease vaccine. Veterinary World, 2022, 15, 524-530.	0.7	2
171	Avidity of Polyclonal Antibodies to Foot-and-Mouth Disease Virus in Bovine Serum Measured Using Bio-Layer Interferometry. Viruses, 2022, 14, 714.	1.5	2
172	Infectious diseases of economic importance: Molecular biological characteristics of foot-and-mouth disease viruses collected in Tanzania from 1967 to 2009. Onderstepoort Journal of Veterinary Research, 2012, 79, .	0.6	1
173	Genome Sequences of Nine Vesicular Stomatitis Virus Isolates from South America. Genome Announcements, 2016, 4, .	0.8	1
174	Elimination of Non-cytopathic Bovine Viral Diarrhea Virus From the LFBK-αvβ6 Cell Line. Frontiers in Veterinary Science, 2021, 8, 715120.	0.9	1
175	Molecular biological characteristics of foot-and-mouth disease virus in the African buffalo in southern Africa. Onderstepoort Journal of Veterinary Research, 2014, 81, 728.	0.6	0
176	Full genome sequencing to study the evolutionary characteristics of foot-and-mouth disease virus in southern Africa. Onderstepoort Journal of Veterinary Research, 2014, 81, 729.	0.6	0
177	Genome Sequencing of Foot-and-Mouth Disease Virus Type O Isolate GRE/23/94. Genome Announcements, 2016, 4, .	0.8	0
178	A56â€,Evolutionary analyses of foot-and-mouth disease virus in Southeast Asia using whole-genome sequences. Virus Evolution, 2018, 4, .	2.2	0
179	Laboratory Diagnostic Methods to Support the Surveillance and Control of Foot-and-mouth Disease. , 2017, , 275-286.		0