Robert W Maul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5726102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biochemical analysis of DNA synthesis blockage by G-quadruplex structure and bypass facilitated by a G4-resolving helicase. Methods, 2022, 204, 207-214.	1.9	2
2	Promoter Proximity Defines Mutation Window for VH and VΚ Genes Rearranged to Different J Genes. Journal of Immunology, 2022, 208, 2220-2226.	0.4	4
3	Transcriptome and IgH Repertoire Analyses Show That CD11chi B Cells Are a Distinct Population With Similarity to B Cells Arising in Autoimmunity and Infection. Frontiers in Immunology, 2021, 12, 649458.	2.2	20
4	Small Molecule Inhibitors of Activation-Induced Deaminase Decrease Class Switch Recombination in B Cells. ACS Pharmacology and Translational Science, 2021, 4, 1214-1226.	2.5	5
5	Auto-Antibody Production During Experimental Atherosclerosis in ApoE-/- Mice. Frontiers in Immunology, 2021, 12, 695220.	2.2	14
6	The mutant β E202K sliding clamp protein impairs DNA polymerase III replication activity. Journal of Bacteriology, 2021, 203, e0030321.	1.0	4
7	Mitochondrial genetic variation is enriched in G-quadruplex regions that stall DNA synthesis in vitro. Human Molecular Genetics, 2020, 29, 1292-1309.	1.4	36
8	From Influenza Virus Infections to Lupus: Synchronous Estrogen Receptor <i>α</i> and RNA Polymerase II Binding Within the Immunoglobulin Heavy Chain Locus. Viral Immunology, 2020, 33, 307-315.	0.6	9
9	Tumor-Derived Thymic Stromal Lymphopoietin Expands Bone Marrow B-cell Precursors in Circulation to Support Metastasis. Cancer Research, 2019, 79, 5826-5838.	0.4	21
10	DNA Breaks in Ig V Regions Are Predominantly Single Stranded and Are Generated by UNG and MSH6 DNA Repair Pathways. Journal of Immunology, 2019, 202, 1573-1581.	0.4	4
11	B cells from young and old mice switch isotypes with equal frequencies after ex vivo stimulation. Cellular Immunology, 2019, 345, 103966.	1.4	10
12	Complex sex-biased antibody responses: estrogen receptors bind estrogen response elements centered within immunoglobulin heavy chain gene enhancers. International Immunology, 2019, 31, 141-156.	1.8	35
13	J H 6 downstream intronic sequence is dispensable for RNA polymerase II accumulation and somatic hypermutation of the variable gene in Ramos cells. Molecular Immunology, 2018, 97, 101-108.	1.0	4
14	Naive B Cells with High-Avidity Germline-Encoded Antigen Receptors Produce Persistent IgM+ and Transient IgG+ Memory B Cells. Immunity, 2018, 48, 1135-1143.e4.	6.6	61
15	R-Loop Depletion by Over-expressed RNase H1 in Mouse B Cells Increases Activation-Induced Deaminase Access to the Transcribed Strand without Altering Frequency of Isotype Switching. Journal of Molecular Biology, 2017, 429, 3255-3263.	2.0	18
16	Co-Stimulation of BCR and Toll-Like Receptor 7 Increases Somatic Hypermutation, Memory B Cell Formation, and Secondary Antibody Response to Protein Antigen. Frontiers in Immunology, 2017, 8, 1833.	2.2	27
17	DNA polymerase Î ¹ functions in the generation of tandem mutations during somatic hypermutation of antibody genes. Journal of Experimental Medicine, 2016, 213, 1675-1683.	4.2	27
18	Cockayne syndrome group A and B proteins converge on transcription-linked resolution of non-B DNA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12502-12507.	3.3	72

ROBERT W MAUL

#	Article	IF	CITATIONS
19	Hotspots for Vitamin–Steroid–Thyroid Hormone Response Elements Within Switch Regions of Immunoglobulin Heavy Chain Loci Predict a Direct Influence of Vitamins and Hormones on B Cell Class Switch Recombination. Viral Immunology, 2016, 29, 132-136.	0.6	23
20	ATM deficiency promotes development of murine B-cell lymphomas that resemble diffuse large B-cell lymphoma in humans. Blood, 2015, 126, 2291-2301.	0.6	13
21	ATAD5 Deficiency Decreases B Cell Division and <i>Igh</i> Recombination. Journal of Immunology, 2015, 194, 35-42.	0.4	10
22	Defective Repair of Uracil Causes Telomere Defects in Mouse Hematopoietic Cells. Journal of Biological Chemistry, 2015, 290, 5502-5511.	1.6	23
23	Topoisomerase I deficiency causes RNA polymerase II accumulation and increases AID abundance in immunoglobulin variable genes. DNA Repair, 2015, 30, 46-52.	1.3	12
24	Spt5 accumulation at variable genes distinguishes somatic hypermutation in germinal center B cells from ex vivo–activated cells. Journal of Experimental Medicine, 2014, 211, 2297-2306.	4.2	43
25	Refining the Neuberger model: Uracil processing by activated B cells. European Journal of Immunology, 2014, 44, 1913-1916.	1.6	18
26	Escherichia coli DNA Polymerase IV (Pol IV), but Not Pol II, Dynamically Switches with a Stalled Pol III* Replicase. Journal of Bacteriology, 2012, 194, 3589-3600.	1.0	36
27	DNA polymerase ζ generates tandem mutations in immunoglobulin variable regions. Journal of Experimental Medicine, 2012, 209, 1075-1081.	4.2	42
28	Different B Cell Populations Mediate Early and Late Memory During an Endogenous Immune Response. Science, 2011, 331, 1203-1207.	6.0	475
29	Uracil residues dependent on the deaminase AID in immunoglobulin gene variable and switch regions. Nature Immunology, 2011, 12, 70-76.	7.0	106
30	XRCC1 suppresses somatic hypermutation and promotes alternative nonhomologous end joining in <i>Igh</i> genes. Journal of Experimental Medicine, 2011, 208, 2209-2216.	4.2	51
31	XRCC1 suppresses somatic hypermutation and promotes alternative nonhomologous end joining in <i>lgh</i> genes. Journal of Cell Biology, 2011, 195, i2-i2.	2.3	0
32	Controlling somatic hypermutation in immunoglobulin variable and switch regions. Immunologic Research, 2010, 47, 113-122.	1.3	31
33	AID and Somatic Hypermutation. Advances in Immunology, 2010, 105, 159-191.	1.1	186
34	Local Sequence Targeting in the AID/APOBEC Family Differentially Impacts Retroviral Restriction and Antibody Diversification. Journal of Biological Chemistry, 2010, 285, 40956-40964.	1.6	71
35	Women, autoimmunity, and cancer: a dangerous liaison between estrogen and activation-induced deaminase?. Journal of Experimental Medicine, 2009, 206, 11-13.	4.2	18
36	A Portable Hot Spot Recognition Loop Transfers Sequence Preferences from APOBEC Family Members to Activation-induced Cytidine Deaminase. Journal of Biological Chemistry, 2009, 284, 22898-22904.	1.6	121

Robert W Maul

#	Article	IF	CITATIONS
37	Immunoglobulin switch μ sequence causes RNA polymerase II accumulation and reduces dA hypermutation. Journal of Experimental Medicine, 2009, 206, 1237-1244.	4.2	102
38	Hijacked DNA repair proteins and unchained DNA polymerases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 605-611.	1.8	27
39	A model for DNA polymerase switching involving a single cleft and the rim of the sliding clamp. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12664-12669.	3.3	72
40	Immunoglobulin switch µ sequence causes RNA polymerase II accumulation and reduces dA hypermutation. Journal of Cell Biology, 2009, 185, i9-i9.	2.3	0
41	Role of Escherichia coli DNA Polymerase I in Conferring Viability upon the dnaN159 Mutant Strain. Journal of Bacteriology, 2007, 189, 4688-4695.	1.0	14
42	Differential binding of <i>Escherichia coli</i> DNA polymerases to the βâ€sliding clamp. Molecular Microbiology, 2007, 65, 811-827.	1.2	32
43	Investigating the role of the <i>E. coli</i> βâ€sliding clamp in DNA polymerase Vâ€dependent translesion DNA synthesis. FASEB Journal, 2006, 20, A909.	0.2	0
44	Mutant forms of theEscherichia colil ² sliding clamp that distinguish between its roles in replication and DNA polymerase V-dependent translesion DNA synthesis. Molecular Microbiology, 2005, 55, 1751-1766.	1.2	44
45	Roles of the Escherichia coli RecA Protein and the Global SOS Response in Effecting DNA Polymerase Selection In Vivo. Journal of Bacteriology, 2005, 187, 7607-7618.	1.0	39
46	Identification of Basonuclin2, a DNA-binding zinc-finger protein expressed in germ tissues and skin keratinocytes. Genomics, 2004, 83, 821-833.	1.3	42