
David Williams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5725773/publications.pdf Version: 2024-02-01

ΠΑΝΙΟ ΜΙΤΤΑΜΟ

#	Article	IF	CITATIONS
1	Long noncoding RNAs and sulforaphane: a target for chemoprevention and suppression of prostate cancer. Journal of Nutritional Biochemistry, 2017, 42, 72-83.	4.2	81
2	3,3′-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells. Toxicology and Applied Pharmacology, 2012, 263, 345-351.	2.8	73
3	Toxicogenomic Profiling of the Hepatic Tumor Promoters Indole-3-Carbinol, 17β-Estradiol and β-Naphthoflavone in Rainbow Trout. Toxicological Sciences, 2006, 90, 61-72.	3.1	68
4	S-Oxygenation of the thioether organophosphate insecticides phorate and disulfoton by human lung flavin-containing monooxygenase 2. Biochemical Pharmacology, 2004, 68, 959-967.	4.4	60
5	Mammalian flavin-containing monooxygenase (FMO) as a source of hydrogen peroxide. Biochemical Pharmacology, 2014, 89, 141-147.	4.4	59
6	Metabolism of the anti-tuberculosis drug ethionamide by mouse and human FMO1, FMO2 and FMO3 and mouse and human lung microsomes. Toxicology and Applied Pharmacology, 2008, 233, 420-427.	2.8	57
7	Indole-3-carbinol in the maternal diet provides chemoprotection for the fetus against transplacental carcinogenesis by the polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene. Carcinogenesis, 2006, 27, 2116-2123.	2.8	50
8	Epigenetic Regulation by Sulforaphane: Opportunities for Breast and Prostate Cancer Chemoprevention. Current Pharmacology Reports, 2015, 1, 102-111.	3.0	50
9	Flavin-containing monooxygenase-3: Induction by 3-methylcholanthrene and complex regulation by xenobiotic chemicals in hepatoma cells and mouse liver. Toxicology and Applied Pharmacology, 2010, 247, 60-69.	2.8	34
10	Chemoprevention of dibenzo[a,l]pyrene transplacental carcinogenesis in mice born to mothers administered green tea: primary role of caffeine. Carcinogenesis, 2008, 29, 1581-1586.	2.8	33
11	Transplacental carcinogenesis with dibenzo[def,p]chrysene (DBC): Timing of maternal exposures determines target tissue response in offspring. Cancer Letters, 2012, 317, 49-55.	7.2	28
12	Cytochrome P450 1b1 in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis: Tumorigenicity of individual PAHs and coal-tar extract, DNA adduction and expression of select genes in the Cyp1b1 knockout mouse. Toxicology and Applied Pharmacology, 2015, 287, 149-160.	2.8	26
13	Toxicokinetics of benzo[a]pyrene in humans: Extensive metabolism as determined by UPLC-accelerator mass spectrometry following oral micro-dosing. Toxicology and Applied Pharmacology, 2019, 364, 97-105.	2.8	23
14	Pharmacokinetics of [14C]-Benzo[a]pyrene (BaP) in humans: Impact of Co-Administration of smoked salmon and BaP dietary restriction. Food and Chemical Toxicology, 2018, 115, 136-147.	3.6	20
15	Flavin-containing monooxygenase S-oxygenation of a series of thioureas and thiones. Toxicology and Applied Pharmacology, 2014, 278, 91-99.	2.8	16
16	3,3′-Diindolylmethane Exhibits Significant Metabolism after Oral Dosing in Humans. Drug Metabolism and Disposition, 2021, 49, 694-705.	3.3	15
17	Analysis of dibenzo[def,p]chrysene-deoxyadenosine adducts in wild-type and cytochrome P450 1b1 knockout mice using stable-isotope dilution UHPLC-MS/MS. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2015, 782, 51-56.	1.7	10
18	Dibenzo[<i>def,p</i>]chrysene transplacental carcinogenesis in wild-type, <i>Cyp1b1</i> knockout, and <i>CYP1B1</i> humanized mice. Molecular Carcinogenesis, 2017, 56, 163-171.	2.7	7

#	Article	IF	CITATIONS
19	Application of a fuzzy neural network model in predicting polycyclic aromatic hydrocarbon-mediated perturbations of the Cyp1b1 transcriptional regulatory network in mouse skin. Toxicology and Applied Pharmacology, 2013, 267, 192-199.	2.8	6