Marina Semchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/572576/publications.pdf

Version: 2024-02-01

34 papers 3,195 citations

304368 22 h-index 395343 33 g-index

36 all docs 36 docs citations

36 times ranked

5167 citing authors

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
2	The fungal collaboration gradient dominates the root economics space in plants. Science Advances, $2020, 6, .$	4.7	377
3	Plant root exudates mediate neighbour recognition and trigger complex behavioural changes. New Phytologist, 2014, 204, 631-637.	3.5	217
4	Fungal diversity regulates plant-soil feedbacks in temperate grassland. Science Advances, 2018, 4, eaau4578.	4.7	161
5	An integrated framework of plant form and function: the belowground perspective. New Phytologist, 2021, 232, 42-59.	3.5	153
6	Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytologist, 2021, 231, 763-776.	3.5	126
7	Effects of physical connection and genetic identity of neighbouring ramets on rootâ€placement patterns in two clonal species. New Phytologist, 2007, 176, 644-654.	3.5	117
8	Challenging the tragedy of the commons in root competition: confounding effects of neighbour presence and substrate volume. Journal of Ecology, 2007, 95, 252-260.	1.9	110
9	Global root traits (GRooT) database. Global Ecology and Biogeography, 2021, 30, 25-37.	2.7	90
10	Positive effect of shade on plant growth: amelioration of stress or active regulation of growth rate?. Journal of Ecology, 2012, 100, 459-466.	1.9	83
11	Plasticity in plant functional traits is shaped by variability in neighbourhood species composition. New Phytologist, 2016, 211, 455-463.	3.5	64
12	Deciphering the role of specialist and generalist plant–microbial interactions as drivers of plant–soil feedback. New Phytologist, 2022, 234, 1929-1944.	3.5	63
13	Kin recognition is densityâ€dependent and uncommon among temperate grassland plants. Functional Ecology, 2012, 26, 1214-1220.	1.7	62
14	Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nature Ecology and Evolution, 2021, 5, 1123-1134.	3.4	62
15	Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities. ISME Journal, 2018, 12, 2211-2224.	4.4	55
16	Different sets of belowground traits predict the ability of plant species to suppress and tolerate their competitors. Plant and Soil, 2018, 424, 157-169.	1.8	50
17	Intraspecific genetic diversity modulates plant–soil feedback and nutrient cycling. New Phytologist, 2017, 216, 90-98.	3.5	46
18	Foraging for space and avoidance of physical obstructions by plant roots: a comparative study of grasses from contrasting habitats. New Phytologist, 2008, 179, 1162-1170.	3.5	39

#	Article	IF	CITATIONS
19	The effect of breeding on allometry and phenotypic plasticity in four varieties of oat (Avena sativa L.). Field Crops Research, 2005, 93, 151-168.	2.3	32
20	Limited phenotypic plasticity in rangeâ€edge populations: a comparison of coâ€occurring populations of two <i>Agrimonia</i> species with different geographical distributions. Plant Biology, 2011, 13, 177-184.	1.8	31
21	The Role of Leaf Lobation in Elongation Responses to Shade in the Rosette-forming Forb Serratula tinctoria (Asteraceae). Annals of Botany, 2007, 100, 83-90.	1.4	26
22	Plants are least suppressed by their frequent neighbours: the relationship between competitive ability and spatial aggregation patterns. Journal of Ecology, 2013, 101, 1313-1321.	1.9	26
23	To compete or not to compete: an experimental study of interactions between plant species with contrasting root behaviour. Evolutionary Ecology, 2010, 24, 1433-1445.	0.5	25
24	Drought soil legacy overrides maternal effects on plant growth. Functional Ecology, 2019, 33, 1400-1410.	1.7	25
25	Functional diversity and identity of plant genotypes regulate rhizodeposition and soil microbial activity. New Phytologist, 2021, 232, 776-787.	3.5	24
26	Legume presence reduces the decomposition rate of non-legume roots. Soil Biology and Biochemistry, 2016, 94, 88-93.	4.2	22
27	Spatial mapping of root systems reveals diverse strategies of soil exploration and resource contest in grassland plants. Journal of Ecology, 2021, 109, 652-663.	1.9	16
28	Dominance, diversity, and niche breadth in arbuscular mycorrhizal fungal communities. Ecology, 2022, 103, e3761.	1.5	11
29	Manipulation of vegetation with activated carbon reveals the role of root exudates in shaping native grassland communities. Journal of Vegetation Science, 2019, 30, 1056-1067.	1.1	9
30	Soil biota and chemical interactions promote coâ€existence in coâ€evolved grassland communities. Journal of Ecology, 2019, 107, 2611-2622.	1.9	8
31	Are researchers following best storage practices for measuring soil biochemical properties?. Soil, 2021, 7, 95-106.	2.2	7
32	Constraints on selfish behavior in plants. Science, 2020, 370, 1167-1168.	6.0	3
33	Spatial heterogeneity in root litter and soil legacies differentially affect legume root traits. Plant and Soil, 2018, 428, 253-264.	1.8	2
34	Grassland belowground feedbacks and climate change. , 2019, , 203-217.		0