Abshar Hasan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5725652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. International Journal of Biological Macromolecules, 2018, 111, 923-934.	3.6	179
2	Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: A review. Journal of Separation Science, 2014, 37, 1805-1825.	1.3	164
3	Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech, 2018, 8, 216.	1.1	124
4	Removal of methylene blue dye from aqueous solution using immobilized Agrobacterium fabrum biomass along with iron oxide nanoparticles as biosorbent. Environmental Science and Pollution Research, 2018, 25, 21605-21615.	2.7	108
5	Fabrication and characterization of chitosan, polyvinylpyrrolidone, and cellulose nanowhiskers nanocomposite films for wound healing drug delivery application. Journal of Biomedical Materials Research - Part A, 2017, 105, 2391-2404.	2.1	107
6	Surface Functionalization of Ti6Al4V via Self-assembled Monolayers for Improved Protein Adsorption and Fibroblast Adhesion. Langmuir, 2018, 34, 3494-3506.	1.6	97
7	Effect of Functional Groups of Self-Assembled Monolayers on Protein Adsorption and Initial Cell Adhesion. ACS Biomaterials Science and Engineering, 2018, 4, 3224-3233.	2.6	74
8	Growthâ€Factor Free Multicomponent Nanocomposite Hydrogels That Stimulate Bone Formation. Advanced Functional Materials, 2020, 30, 1906205.	7.8	65
9	Kinetic studies of attachment and re-orientation of octyltriethoxysilane for formation of self-assembled monolayer on a silica substrate. Materials Science and Engineering C, 2016, 68, 423-429.	3.8	58
10	Synthesis, characterization and in vitro analysis of α-Fe2O3-GdFeO3 biphasic materials as therapeutic agent for magnetic hyperthermia applications. Materials Science and Engineering C, 2018, 92, 932-941.	3.8	58
11	A novel bio-sorbent comprising encapsulated Agrobacterium fabrum (SLAJ731) and iron oxide nanoparticles for removal of crude oil co-contaminant, lead Pb(II). Journal of Environmental Chemical Engineering, 2017, 5, 442-452.	3.3	56
12	Conformational and Organizational Insights into Serum Proteins during Competitive Adsorption on Self-Assembled Monolayers. Langmuir, 2018, 34, 8178-8194.	1.6	56
13	Review: Polymers, Surface-Modified Polymers, and Self Assembled Monolayers as Surface-Modifying Agents for Biomaterials. Polymer-Plastics Technology and Engineering, 2015, 54, 1358-1378.	1.9	54
14	Edible oil nanoemulsion: An organic nanoantibiotic as a potential biomolecule delivery vehicle. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 410-419.	1.8	47
15	Effect of Zn/ZnO integration with hydroxyapatite: a review. Materials Technology, 2018, 33, 79-92.	1.5	47
16	Laser cladding with HA and functionally graded TiO2-HA precursors on Ti–6Al–4V alloy for enhancing bioactivity and cyto-compatibility. Surface and Coatings Technology, 2018, 352, 420-436.	2.2	45
17	Antibacterial nano-biocomposite scaffolds of Chitosan, Carboxymethyl Cellulose and Zn & Fe integrated Hydroxyapatite (Chitosan-CMC-FZO@HAp) for bone tissue engineering. Cellulose, 2021, 28, 9207-9226.	2.4	26
18	Therapeutic Advancement in Alzheimer Disease: New Hopes on the Horizon?. CNS and Neurological Disorders - Drug Targets, 2018, 17, 571-589.	0.8	26

Abshar Hasan

#	Article	IF	CITATIONS
19	Surface modification of Ti6Al4V by forming hybrid self-assembled monolayers and its effect on collagen-I adsorption, osteoblast adhesion and integrin expression. Applied Surface Science, 2020, 505, 144611.	3.1	25
20	Surface Design for Immobilization of an Antimicrobial Peptide Mimic for Efficient Antiâ€Biofouling. Chemistry - A European Journal, 2020, 26, 5789-5793.	1.7	25
21	Self-Assembly of Minimal Peptoid Sequences. ACS Macro Letters, 2020, 9, 494-499.	2.3	21
22	Crystallization and lamellar nanosheet formation of an aromatic dipeptoid. Chemical Communications, 2019, 55, 5867-5869.	2.2	17
23	Chain-End Modifications and Sequence Arrangements of Antimicrobial Peptoids for Mediating Activity and Nano-Assembly. Frontiers in Chemistry, 2020, 8, 416.	1.8	17
24	Preparation and optimization of chitosan nanoparticles from discarded squilla (<i>Carinosquilla) Tj ETQq0 0 0 rgl and Waste Management Association, 2020, 70, 1227-1235.</i>	3T /Overloo 0.9	ck 10 Tf 50 5 16
25	Effect of carbon based fillers on xylan/chitosan/nano-HAp composite matrix for bone tissue engineering application. International Journal of Biological Macromolecules, 2022, 197, 1-11.	3.6	11
26	High yield, facile aqueous synthesis and characterization of C18 functionalized iron oxide nanoparticles. Materials Research Express, 2015, 2, 045014.	0.8	10
27	Topographically guided hierarchical mineralization. Materials Today Bio, 2021, 11, 100119.	2.6	10
28	Effect of cellulose nanocrystals on xylan/chitosan/nanoβ-TCP composite matrix for bone tissue engineering. Cellulose, 2022, 29, 5689-5709.	2.4	6
29	Mineralizing Coating on 3D Printed Scaffolds for the Promotion of Osseointegration. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
30	Implications of the Nanoscopic Surface Modification on the Protein Adsorption and Cell Adhesion. Nanotechnology in the Life Sciences, 2021, , 423-460.	0.4	0