Vassilis J Demopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5725339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aldose Reductase Enzyme and its Implication to Major Health Problems of the 21st Century. Current Medicinal Chemistry, 2009, 16, 734-752.	2.4	207
2	RAGE: A Multi-Ligand Receptor Unveiling Novel Insights in Health and Disease. Current Medicinal Chemistry, 2010, 17, 2232-2252.	2.4	126
3	Isomeric Benzoylpyrroleacetic Acids: Some Structural Aspects for Aldose Reductase Inhibitory and Anti-Inflammatory Activities. Journal of Pharmaceutical Sciences, 1995, 84, 79-82.	3.3	83
4	Substituted Pyrrol-1-ylacetic Acids That Combine Aldose Reductase Enzyme Inhibitory Activity and Ability To Prevent the Nonenzymatic Irreversible Modification of Proteins from Monosaccharides. Journal of Medicinal Chemistry, 2003, 46, 417-426.	6.4	63
5	Carboxymethylated pyridoindole antioxidants as aldose reductase inhibitors: Synthesis, activity, partitioning, and molecular modeling. Bioorganic and Medicinal Chemistry, 2008, 16, 4908-4920.	3.0	63
6	Design and synthesis of novel series of pyrrole based chemotypes and their evaluation as selective aldose reductase inhibitors. A case of bioisosterism between a carboxylic acid moiety and that of a tetrazole. Bioorganic and Medicinal Chemistry, 2010, 18, 2107-2114.	3.0	62
7	[1-(3,5-Difluoro-4-hydroxyphenyl)-1H-pyrrol-3-yl]phenylmethanone as a Bioisostere of a Carboxylic Acid Aldose Reductase Inhibitor. Journal of Medicinal Chemistry, 2004, 47, 2706-2709.	6.4	49
8	A Diverse Series of Substituted Benzenesulfonamides as Aldose Reductase Inhibitors with Antioxidant Activity: Design, Synthesis, and in Vitro Activity. Journal of Medicinal Chemistry, 2010, 53, 7756-7766.	6.4	48
9	Proposed dopaminergic pharmacophore of lergotrile, pergolide, and related ergot alkaloid derivatives. Journal of Medicinal Chemistry, 1981, 24, 238-240.	6.4	46
10	Novel aldose reductase inhibitors: a patent survey (2006 – present). Expert Opinion on Therapeutic Patents, 2012, 22, 1303-1323.	5.0	43
11	Development of aldose reductase inhibitors for the treatment of inflammatory disorders. Expert Opinion on Drug Discovery, 2013, 8, 1365-1380.	5.0	38
12	Evaluation of aldose reductase inhibition and docking studies of some secondary metabolites, isolated from Origanum vulgare L. ssp. hirtum. Bioorganic and Medicinal Chemistry, 2006, 14, 1653-1659.	3.0	33
13	Behavioral and antioxidant activity of a tosylbenz[g]indolamine derivative. A proposed better profile for a potential antipsychotic agent. Annals of General Psychiatry, 2004, 3, 1.	0.1	29
14	Toward the Development of Innovative Bifunctional Agents To Induce Differentiation and To Promote Apoptosis in Leukemia: Clinical Candidates and Perspectives. Journal of Medicinal Chemistry, 2010, 53, 6779-6810.	6.4	24
15	Structure–activity relations on [1-(3,5-difluoro-4-hydroxyphenyl)-1H-pyrrol-3-yl]phenylmethanone. The effect of methoxy substitution on aldose reductase inhibitory activity and selectivity. Bioorganic and Medicinal Chemistry, 2011, 19, 1426-1433.	3.0	24
16	Electrophilic Substitution of Indole on the Benzene Moiety: A Synthesis of 5-Acyl- and 5-Aroylindoles. Synthesis, 1998, 1998, 1519-1522.	2.3	23
17	Design and synthesis of N-(3,5-difluoro-4-hydroxyphenyl)benzenesulfonamides as aldose reductase inhibitors. Bioorganic and Medicinal Chemistry, 2008, 16, 3926-3932.	3.0	21
18	Permeability characteristics of novel aldose reductase inhibitors using rat jejunum in vitro. European Journal of Pharmaceutical Sciences, 2006, 28, 128-133.	4.0	20

#	Article	IF	CITATIONS
19	Decreasing acidity in a series of aldose reductase inhibitors: 2-Fluoro-4-(1H-pyrrol-1-yl)phenol as a scaffold for improved membrane permeation. Bioorganic and Medicinal Chemistry, 2014, 22, 2194-2207.	3.0	20
20	A combinatorial access to 1,5-benzodiazepine derivatives and their evaluation for aldose reductase inhibition. Tetrahedron, 2009, 65, 7741-7751.	1.9	19
21	Nutritional Overview on the Management of Type 2 Diabetes and the Prevention of its Complications. Current Diabetes Reviews, 2010, 6, 400-409.	1.3	19
22	Synthesis of derivatives of the keto-pyrrolyl-difluorophenol scaffold: Some structural aspects for aldose reductase inhibitory activity and selectivity. Bioorganic and Medicinal Chemistry, 2013, 21, 869-873.	3.0	19
23	A One-Step Conversion of Certain Indole and Pyrrole Glyoxtlic Acid Esters to the Corresponding Acetates. Synthetic Communications, 1989, 19, 2585-2594.	2.1	18
24	Pyrrolylbenzothiazole Derivatives as Aldose Reductase Inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2002, 17, 131-135.	5.2	18
25	A study of the friedel-crafts acylation of 1-benzenesulfonyl-1H-pyrrole in the preparation of 3-aroylpyrroles. Journal of Heterocyclic Chemistry, 1998, 35, 1345-1348.	2.6	17
26	Lipophilicity of Some Substituted Morpholine Derivatives Synthesized as Potential Antinociceptive Agents. Archiv Der Pharmazie, 1990, 323, 53-56.	4.1	14
27	Compounds that Combine Aldose Reductase Inhibitory Activity and Ability to Prevent the Glycation (Glucation and/or Fructation) of Proteins as Putative Pharmacotherapeutic Agents. Drug Design Reviews Online, 2005, 2, 293-304.	0.7	14
28	Synthesis of 3â€ (2â€Aminoethyl)pyrrole Derivatives. Journal of Heterocyclic Chemistry, 1988, 25, 635-638.	2.6	13
29	Estrogen-cis-dichloroethylenediamineplatinum (II) complexes: synthesis and evaluation of binding affinity for estrogen receptors and the effect on breast cancer MCF-7 cells. European Journal of Medicinal Chemistry, 1992, 27, 301-305.	5.5	12
30	Synthesis of 6,7,8,9-tetrahydro-N,N-di-n-propyl-1H-benz[g] indol-7-amine, a potential dopamine receptor agonist. Journal of Heterocyclic Chemistry, 1995, 32, 1145-1148.	2.6	12
31	Inhibitory effect of polar oregano extracts on aldose reductase and soybean lipoxygenasein vitro. Phytotherapy Research, 2006, 20, 605-606.	5.8	12
32	Lipophilicity Studies on Pyrrolylâ€Acetic Acid Derivatives. Experimental Versus Predicted log <i>P</i> Values in Relationship with Aldose Reductase Inhibitory Activity. QSAR and Combinatorial Science, 2009, 28, 551-560.	1.4	12
33	Drug-like Properties and Fraction Lipophilicity Index as a combined metric. ADMET and DMPK, 2021, 9, 177-190.	2.1	12
34	Evaluation of aldose reductase inhibition and docking studies of 6′-nitro and 6′,6″-dinitrorosmarinic acids. European Journal of Medicinal Chemistry, 2010, 45, 1663-1666.	5.5	11
35	Clauson–Kaas-Type Synthesis of Pyrrolyl-phenols, from the Hydrochlorides of Aminophenols, in the Presence of Nicotinamide. Synthetic Communications, 2013, 43, 2949-2954.	2.1	11
36	Formation of novel N-acetylcysteine-hemin adducts abrogates hemin-induced cytotoxicity and suppresses the NRF2-driven stress response in human pro-erythroid K562Âcells. European Journal of Pharmacology, 2020, 880, 173077.	3.5	11

VASSILIS J DEMOPOULOS

#	Article	IF	CITATIONS
37	Substituted derivatives of indole acetic acid as aldose reductase inhibitors withâ€⁻antioxidant activity: structure-activity relationship. General Physiology and Biophysics, 2012, 30, 342-349.	0.9	10
38	A CONVENIENT SYNTHESIS OF PYRROLE-3-CARBOXALDEHYDE. Organic Preparations and Procedures International, 1986, 18, 278-281.	1.3	9
39	Synthesis of GABA-Valproic Acid Derivatives and Evaluation of Their Anticonvulsant and Antioxidant Activity. Archiv Der Pharmazie, 1996, 329, 393-398.	4.1	8
40	Novel 1,4 Substituted Piperidine Derivatives. Synthesis and Correlation of Antioxidant Activity with Structure and Lipophilicity. Journal of Pharmacy and Pharmacology, 2011, 47, 131-137.	2.4	8
41	Novel N-substituted 3-aminosteroids which exhibit anti-inflammatory properties and influence free radical processes. European Journal of Medicinal Chemistry, 1993, 28, 521-525.	5.5	7
42	Antioxidant and aldose reductase inhibition activity of <i>Ligustrum japonicum</i> and <i>Olea europaea</i> L. leaf extracts. European Journal of Lipid Science and Technology, 2011, 113, 876-885.	1.5	7
43	Synthesis ofN-alkyl derivatives of 4-(2′-aminoethyl)indole. Journal of Heterocyclic Chemistry, 1982, 19, 1195-1199.	2.6	6
44	HPLC-based lipophilicity of pyrrolyl-acetic acid ARIs: Relationships with biological activity. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 61-67.	2.3	6
45	A CONVENIENT "HYDROGEN TRANSFER―HYDROGENATION OF TESTOSTERONE. Organic Preparations and Procedures International, 1989, 21, 515-517.	1.3	5
46	Effect of the position of the cyano-group of cyanopregnenolones on their drug metabolic inducing activity. European Journal of Drug Metabolism and Pharmacokinetics, 1991, 16, 9-13.	1.6	5
47	SYNTHESIS OF N-PROTECTED 1H-INDOLE-5-CARBOXYLIC ACIDS WITH ALDOSE REDUCTASE INHIBITORY POTENTIAL. Organic Preparations and Procedures International, 2002, 34, 511-514.	1.3	5
48	A Facile Preparation of 1-(6-Hydroxyindol-1-yl)-2,2-dimethylpropan-1-one Chemical and Pharmaceutical Bulletin, 2003, 51, 98-99.	1.3	5
49	Phase Transfer Catalyzed Aromatic Nucleophilic Substituticn of Triflate Esters of 2-and 4-Nitro-estrone. Synthetic Communications, 1990, 20, 2417-2421.	2.1	4
50	Synthesis ofN-acyl-2-pyrrolidinones from the corresponding N-acyl-GABA derivatives. Journal of Heterocyclic Chemistry, 1996, 33, 989-990.	2.6	4
51	Effect of Aminoethylpyrroles on Carrageenan-induced Inflammation and on Lipid Peroxidation in Rats: Some Structural Aspects. Journal of Pharmacy and Pharmacology, 2011, 46, 740-744.	2.4	4
52	Bis-pyrrolyl-tetrazolyl derivatives as hybrid polar compounds: A case of lipophilic functional bioisosterism with bis-acetamides. European Journal of Medicinal Chemistry, 2012, 50, 75-80.	5.5	3
53	Cu(II) complex of an estradiol derivative with potent antiâ€inflammatory properties. Archiv Der Pharmazie, 1991, 324, 533-536	4.1	2
54	Validation of a computational procedure for the calculation of the polar surface area (PSA) of organic compounds. Die Pharmazie, 2002, 57, 652-3.	0.5	2

#	Article	IF	CITATIONS
55	AN IMPROVED PREPARATION OF 2,3,4-TRIMETHOXYBENZSUBER-6-ONE. Organic Preparations and Procedures International, 1982, 14, 333-336.	1.3	1
56	Kurzmitteilungen: Synthesis and Biological Evaluation of 3-(2-Aminoethyl)pyrrole Derivatives Synthese und biologische Bewertung von 3-(2-Aminoethyl)pyrrol-Derivaten. Archiv Der Pharmazie, 1989, 322, 827-828.	4.1	1
57	The AlCL3Catalyzed Benzoylation of Ethyl Pyrrole-2-Acetate: An Unusual 6-Substitution. Synthetic Communications, 1992, 22, 761-766.	2.1	1
58	The efficiency of RP-TLC for lipophilicity assessment. A comparative study on a series of pyrrolyl-acetic acid derivatives, inhibitors of aldose reductase. Journal of Planar Chromatography - Modern TLC, 2012, 25, 349-354.	1.2	1
59	NOVEL CHEMOTYPES IN PHARMACOCHEMICAL APPROACHES. , 2007, , 241-250.		1
60	The effect of aldose reductase inhibition by JMC-2004 on hyperglycemia-induced endothelial dysfunction. Neuroendocrinology Letters, 2008, 29, 775-8.	0.2	1
61	Synthesis of Nâ€Protected 1Hâ€Indoleâ€5â€carboxylic Acids (VI) with Aldose Reductase Inhibitory Potential ChemInform, 2002, 33, 112-112.	0.0	0
62	Fraction Lipophilicity Index (FLI). International Journal of Quantitative Structure-Property Relationships, 2019, 4, 41-66.	0.5	0
63	A Study of the Electrophilic Aroylation of 1-Aryl-1H-pyrroles: An Improved Preparation of an Active and Selective Aldose Reductase Inhibitor. Organic Preparations and Procedures International, 2019, 51, 147-152.	1.3	0