David Bishop

List of Publications by Year in descending order

[^0]

Sports compression garments improve resting markers of venous return and muscle blood flow in
male basketball players. Journal of Sport and Health Science, 2023, 12,513-522.

Impacts of highấintensity exercise on the metabolomics profile of human skeletal muscle tissue. Scandinavian Journal of Medicine and Science in Sports, 2022, 32, 402-413.

Methods to match high-intensity interval exercise intensity in hypoxia and normoxia â€ " A pilot study.
Journal of Exercise Science and Fitness, 2022, 20, 70-76.

Transcription Factor Movement and Exercise-Induced Mitochondrial Biogenesis in Human Skeletal
4 Muscle: Current Knowledge and Future Perspectives. International Journal of Molecular Sciences, 2022, 23, 1517.

5 Aerobicâ€interval exercise with blood flow restriction potentiates early markers of metabolic health in
man. Acta Physiologica, 2022, 234, e13769.

Assessing mitochondrial respiration in permeabilized fibres and biomarkers for mitochondrial
content in human skeletal muscle. Acta Physiologica, 2022, 234, e13772.

Myths and methodologies: The use of equivalence and nonâ€inferiority tests for interventional studies
Myths and methodologies: The use of equivalence and nonâ€inferiority tests for interven
in exercise physiology and sport science. Experimental Physiology, 2022, 107, 201-212.
2.0

10

Repeated-Sprint Exercise in the Heat Increases Indirect Markers of Gastrointestinal Damage in
8 Well-Trained Team-Sport Athletes. International Journal of Sport Nutrition and Exercise Metabolism, 2022, 32, 153-162.

9 Interpretation of exercise-induced changes in human skeletal muscle mRNA expression depends on the
9 timing of the post-exercise biopsies. PeerJ, 2022, 10, el2856.

Exercise and Training Regulation of Autophagy Markers in Human and Rat Skeletal Muscle.
International Journal of Molecular Sciences, 2022, 23, 2619.
4.1

5
11 Muscle contraction and mitochondrial biogenesis â€ $€^{*}$ A brief historical reappraisal. Acta Physiologica, 2022, 235, el3813.

Factors Influencing AMPK Activation During Cycling Exercise: A Pooled Analysis and Meta-Regression.
12 Sports Medicine, 2022, 52, 1273-1294.
6.5

16

The Effects of Regular Cold-Water Immersion Use on Training-Induced Changes in Strength and
Endurance Performance: A Systematic Review with Meta-Analysis. Sports Medicine, 2021, 51, 161-174.

Compression enhances lowerâ€limb somatosensation in individuals with poor somatosensation, but
14 impairs performance in individuals wth good somatosensation. Translational Sports Medicine, 2021, 4,
1.1

5
280-288.

Exercise mitigates sleep-loss-induced changes in glucose tolerance, mitochondrial function,
6.5

28
sarcoplasmic protein synthesis, and diurnal rhythms. Molecular Metabolism, 2021, 43, 101110.

Bloodâ€ \ddagger lowâ€estricted exercise: Strategies for enhancing muscle adaptation and performance in the
enduranceâ€trained athlete. Experimental Physiology, 2021, 106, 837-860.

Ammonium chloride administration prior to exercise has muscleâ€specific effects on mitochondrial and
myofibrillar protein synthesis in rats. Physiological Reports, 2021, 9, el4797.
mis.

Reduced postâ€exercise muscle microvascular perfusion with compression is offset by increased muscle
High-intensity exercise training â€" too much of a good thing?. Nature Reviews Endocrinology, 2021, 17,

$385-386$. | Genome wide association study of response to interval and continuous exercise training: the |
| :--- |
| Predict-HIIT study. Journal of Biomedical Science, 2021, 28, 37. |

28 Effects of Dietary Supplements on Adaptations to Endurance Training. Sports Medicine, 2020, 50, 25-53. 6.5
29 Mitochondrial respiration variability and simulations in human skeletal muscle: The Gene SMART
study. FASEB Journal, 2020, 34, 2978-2986.
25Forty high-intensity interval training sessions blunt exercise-induced changes in the nuclear protein
30 content of PGC-1 $1 \pm$ and p53 in human skeletal muscle. American Journal of Physiology - Endocrinology3.5and Metabolism, 2020, 318, E224-E236.
31 Exercise twiceâ€aâ€day potentiates markers of mitochondrial biogenesis in men. FASEB Journal, 2020, 34,
1602-1619.0.5324.130International Journal of Molecular Sciences, 2020, 21, 6948.6.5169
An Examination and Critique of Current Methods to Determine Exercise Intensity. Sports Medicine, 33 2020,50, 1729-1756.
Are Alterations in Skeletal Muscle Mitochondria a Cause or Consequence of Insulin Resistance?.The Molecular Adaptive Responses of Skeletal Muscle to High-Intensity Exercise/Training and Hypoxia.5.138

3 Order of same-day concurrent training influences some indices of power development, but not
37 strength, lean mass, or aerobic fitness in healthy, moderately-active men after 9 weeks of training PLoS ONE, 2020, 15, e0233134.

Modulation of Countermovement Jumpâ€"Derived Markers of Neuromuscular Function With
38 Concurrent vs. Single-Mode Resistance Training. Journal of Strength and Conditioning Research, 2020, 34, 1497-1502.
Maternal exercise attenuates the lower skeletal muscle glucose uptake and insulin secretion caused
by paternal obesity in female adult rat offspring. Journal of Physiology, 2020, 598, 4251-4270.

$40 \quad$| Resistance training upregulates skeletal muscle Na+, K+-ATPase content, with elevations in both $\hat{l} \pm 1$ and |
| :--- |
| $\hat{I} \pm 2, ~ b u t ~ n o t ~$ |
| 2 |

isoforms. European Journal of Applied Physiology, 2020, 120, 1777-1785.

ADORA2A C Allele Carriers Exhibit Ergogenic Responses to Caffeine Supplementation. Nutrients, 2020, 12, 741.

The effect of sleep restriction, with or without highâ€intensity interval exercise, on myofibrillar protein synthesis in healthy young men. Journal of Physiology, 2020, 598, 1523-1536.

Neuromuscular and perceptual responses during repeated cycling sprintsâ€"usefulness of a â€œhypoxic
to normoxicâ€orecovery approach. European Journal of Applied Physiology, 2020, 120, 883-896.
2.5

Effects of Sodium Bicarbonate Supplementation on Muscular Strength and Endurance: A Systematic
Review and Meta-analysis. Sports Medicine, 2020, 50, 1361-1375.

Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Nature
Communications, 2020, 11, 470.

CYP1A2 genotype and acute effects of caffeine on resistance exercise, jumping, and sprinting performance. Journal of the International Society of Sports Nutrition, 2020, 17, 21.
$3.9 \quad 27$

What Dose of Caffeine to Use: Acute Effects of 3 Doses of Caffeine on Muscle Endurance and
Strength. International Journal of Sports Physiology and Performance, 2020, 15, 470-477.

Whole-body cryotherapy does not augment adaptations to high-intensity interval training. Scientific
Reports, 2019, 9, 12013.

CrossTalk opposing view: Exercise training volume is more important than training intensity to
promote increases in mitochondrial content. Journal of Physiology, 2019, 597, 4115-4118.

Rebuttal from David J. Bishop, Javier Botella and Cesare Granata. Journal of Physiology, 2019, 597,
4121-4122.

Twice-a-day training improves mitochondrial efficiency, but not mitochondrial biogenesis, compared with once-daily training. Journal of Applied Physiology, 2019, 127, 713-725.
2.5

14

A â€œhuman knockoutâ€•model to investigate the influence of the $\hat{I} \pm$-actinin- 3 protein on exercise-induced mitochondrial adaptations. Scientific Reports, 2019, 9, 12688.

Cycling with blood flow restriction improves performance and muscle K⁺ regulation and alters the effect of antiâ€oxidant infusion in humans. Journal of Physiology, 2019, 597, 2421-2444.
Effects of Sports Compression Socks on Performance, Physiological, and Hematological Alterations
55 After Long-Haul Air Travel in Elite Female Volleyballers. Journal of Strength and Conditioning Research, 2019, 33, 492-501.

56 Voluntary wheel running prevents the acidosisâ€induced decrease in skeletal muscle mitochondrial reactive oxygen species emission. FASEB Journal, 2019, 33, 4996-5004.

A physiological drop in pH decreases mitochondrial respiration, and HDAC and Akt signaling, in L6
myocytes. American Journal of Physiology - Cell Physiology, 2019, 316, C404-C414.
4.6

A Multi-Center Comparison of O2peak Trainability Between Interval Training and Moderate Intensity
Continuous Training. Frontiers in Physiology, 2019, 10, 19.
2.8

Does Aerobic Training Promote the Same Skeletal Muscle Hypertrophy as Resistance Training? A
Systematic Review and Meta-Analysis. Sports Medicine, 2019, 49, 233-254.
6.5

46

62 High-Intensity Exercise and Mitochondrial Biogenesis: Current Controversies and Future Research

 Directions. Physiology, 2019, 34, 56-70.The Influence of Caffeine Supplementation on Resistance Exercise: A Review. Sports Medicine, 2019, 49,
17-30.

Intermittent but Not Continuous Static Stretching Improves Subsequent Vertical Jump Performance in Flexibility-Trained Athletes. Journal of Strength and Conditioning Research, 2019, 33, 203-210.

| $65 \quad$Does caffeine ingestion before a short-term sprint interval training promote body fat loss?. Brazilian
 Journal of Medical and Biological Research, 2019,52, e9169. |
| :--- | :--- |
| $66 \quad$Principles of Exercise Prescription, and How They Influence Exercise-Induced Changes of
 Transcription Factors and Other Regulators of Mitochondrial Biogenesis. Sports Medicine, 2018, 48,
 $1541-1559$. |
| $67 \quad$The Influence of Post-Exercise Cold-Water Immersion on Adaptive Responses to Exercise: A Review of
 the Literature. Sports Medicine, 2018, 48, 1369-1387. |
| 6.5 |

68 Power-to-Strength Ratio Influences Performance Enhancement with Contrast Training. Medicine and Science in Sports and Exercise, 2018, 50, 1422-1432.
0.43
6

Increased $\langle\mathrm{i}\rangle \mathrm{FXYD} 1</ \mathrm{i}\rangle$ and $\langle\mathrm{i}\rangle \mathrm{PGCâ} € \mathrm{q}\langle\mid \mathrm{i}\rangle \hat{\mathrm{I}} \pm \mathrm{mRNA}$ after blood flowâ€restricted running is related to fibre
typeâ€specific AMPK signalling and oxidative stress in human muscle. Acta Physiologica, 2018, 223, el3045.
3.8

63

Lower Limb Sports Compression Garments Improve Muscle Blood Flow and Exercise Performance

70 During Repeated-Sprint Cycling. International Journal of Sports Physiology and Performance, 2018, 13,
2.3

882-890.

> Enhanced skeletal muscle ribosome biogenesis, yet attenuated mTORC1 and ribosome
> biogenesis-related signalling, following short-term concurrent versus single-mode resistance
> training. Scientific Reports, 2018, 8,560.
3.3

53

Is exercise a viable therapeutic intervention to mitigate mitochondrial dysfunction and insulin
resistance induced by sleep loss?. Sleep Medicine Reviews, 2018, 37, 60-68.

6.5

72
Health Science, 2018, 7, 191-196.

Caffeine Increases Work Done above Critical Power, but Not Anaerobic Work. Medicine and Science in
74 Sports and Exercise, 2018, 50, 131-140.
0.4

19

M-wave normalization of EMG signal to investigate heat stress and fatigue. Journal of Science and Medicine in Sport, 2018, 21, 518-524.

Exercise As An Intervention To Mitigate Mitochondrial Dysfunction And Impaired Glucose Tolerance Induced By Sleep- loss. Medicine and Science in Sports and Exercise, 2018, 50, 149.
$0.4 \quad 1$

Effect of a Repeated Sprint Ability test on the muscle contractile properties in elite futsal players. Scientific Reports, 2018, 8, 17284.
3.3

Exercise alters and $\hat{\imath}^{2}$-alanine combined with exercise augments histidyl dipeptide levels and scavenges
78 lipid peroxidation products in human skeletal muscle. Journal of Applied Physiology, 2018, 125,
2.5 1767-1778.

79 Tissue specificity of mitochondrial adaptations in rats after $4 \hat{A}$ weeks of normobaric hypoxia. European Journal of Applied Physiology, 2018, 118, 1641-1652.

An overview of technical considerations when using quantitative real-time PCR analysis of gene expression in human exercise research. PLoS ONE, 2018, 13, e0196438.

Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal
Muscle. Sports Medicine, 2018, 48, 1809-1828.
Muscle. Sports Medicine, 2018, 48, 1809-1828.

Manipulating graded exercise test variables affects the validity of the lactate threshold and VË ${ }^{\text {TM }} \mathrm{O} 2$ peak.
PLoS ONE, 2018, 13, e0199794.
<i>ACE</i>l/D gene variant predicts ACE enzyme content in blood but not the ACE, UCP2, and UCP3
83 protein content in human skeletal muscle in the Gene SMART study. Journal of Applied Physiology,
2018, 125, 923-930.

The Effects of Acute and Chronic Sprint-Interval Training on Cytokine Responses Are Independent of Prior Caffeine Intake. Frontiers in Physiology, 2018, 9, 671.
2.8

20

Cold-water immersion after training sessions: effects on fiber type-specific adaptations in muscle
85 K⁺transport proteins to sprint-interval training in men. Journal of Applied Physiology,
$2.5 \quad 18$
2018, 125, 429-444.
Rest interval duration does not influence adaptations in acid/base transport proteins following 10 wk
86 of sprint-interval training in active women. American Journal of Physiology - Regulatory Integrative
1.8

13
and Comparative Physiology, 2017, 312, R702-R717.
Sprint-interval but not continuous exercise increases PGC-1 $\hat{I} \pm$ protein content and p53 phosphorylation
Sprint-interval but not continuous exercise increases PGC-1 \pm protein content and p53 phosphorylation
in nuclear fractions of human skeletal muscle. Scientific Reports, $2017,7,44227$.
3.3

57

88 The influence of $\hat{I} \pm-a c t i n i n-3$ deficiency on bone remodelling markers in young men. Bone, 2017, 98, 26-30.
2.9

14
91 Cold-Water Immersion and Contrast Water Therapy: No Improvement of Short-Term Recovery After
Resistance Training. International Journal of Sports Physiology and Performance, 2017, 12, 886-892.

Exercise-related sensations contribute to decrease power during repeated cycle sprints with limited influence on neural drive. European Journal of Applied Physiology, 2017, 117, 2171-2179.
2.5

12

Cold-water immersion following sprint interval training does not alter endurance signaling
93 pathways or training adaptations in human skeletal muscle. American Journal of Physiology -
$1.8 \quad 25$
Regulatory Integrative and Comparative Physiology, 2017, 313, R372-R384.

Sleep Quality but Not Quantity Altered With a Change in Training Environment in Elite Australian
Rules Football Players. International Journal of Sports Physiology and Performance, 2017, 12, 75-80.
2.3

Effects of a 4-week high-intensity interval training on pacing during 5-km running trial. Brazilian
Effects of a 4-week high-intensity interval training on pacing
Journal of Medical and Biological Research, 2017, 50, e6335.
1.5

12

96 The gene SMART study: method, study design, and preliminary findings. BMC Genomics, 2017, $18,821$.
2.8

52

> Fifteen days of 3,200 m simulated hypoxia marginally regulates markers for protein synthesis and
> degradation in human skeletal muscle. Hypoxia (Auckland, $\mathrm{N} Z$), 2016, 4,1 .
1.9

Nitrate Intake Promotes Shift in Muscle Fiber Type Composition during Sprint Interval Training in
Hypoxia. Frontiers in Physiology, 2016, 7, 233.

Endurance Training Intensity Does Not Mediate Interference to Maximal Lower-Body Strength Gain
during Short-Term Concurrent Training. Frontiers in Physiology, 2016, 7, 487.

Mitochondrial adaptations to highâ€wolume exercise training are rapidly reversed after a reduction in
100 training volume in human skeletal muscle. FASEB Journal, 2016, 30, 3413-3423.
0.5

95

101 Similar mitochondrial signaling responses to a single bout of continuous or small-sided-games-based exercise in sedentary men. Journal of Applied Physiology, 2016, 121, 1326-1334.

102 Influence of training intensity on adaptations in acid/base transport proteins, muscle buffer capacity, and repeated-sprint ability in active men. Journal of Applied Physiology, 2016, 121, 1290-1305.
2.5

29
103 ACTN3 R577X and ACE I/D gene variants influence performance in elite sprinters: a multi-cohort study.
BMC Genomics, 2016, 17, 285.

Distinct protein and mRNA kinetics of skeletal muscle proton transporters following exercise can
influence interpretation of adaptations to training. Experimental Physiology, 2016, 101, 1565-1580.
2.0

Mechanistic Insights into the Efficacy of Sodium Bicarbonate Supplementation to Improve Athletic
Performance. Sports Medicine - Open, 2016, 2, 41.
3.1

Concurrent exercise incorporating high-intensity interval or continuous training modulates mTORCl
106 signaling and microRNA expression in human skeletal muscle. American Journal of Physiology -
1.8

Regulatory Integrative and Comparative Physiology, 2016, 310, R1297-R1311.
Training intensity modulates changes in PCCâ€ $\mathbb{I} \hat{I} \pm$ and p 53 protein content and mitochondrial respiration,
but not markers of mitochondrial content in human skeletal muscle. FASEB Journal, 2016, 30, 959-970.
0.5

153

High-Intensity Warm-Ups: Effects During Subsequent Intermittent Exercise. International Journal of Sports Physiology and Performance, 2015, 10, 498-503.
2.3
117 Contraction velocity influence the magnitude and etiology of neuromuscular fatigue during repeated2.9Physiology, 2015, 118, 699-706.
119 Effects of isolated or combined carbohydrate and caffeine supplementation between 2 daily training 1.9 21 sessions on soccer performance. Applied Physiology, Nutrition and Metabolism, 2015, 40, 457-463.Effects of resistance training on neuromuscular characteristics and pacing during 10-km runningtime trial. European Journal of Applied Physiology, 2015, 115, 1513-1522.
2.5

52
.
52

$121 \quad$| Sprint performance under heat stress: A review. Scandinavian Journal of Medicine and Science in |
| :--- |
| Sports, 2015, 25, 79-89. |

133	Postexercise Cold Water Immersion Benefits Are Not Greater than the Placebo Effect. Medicine and Science in Sports and Exercise, 2014, 46, 2139-2147.	0.4	108
134	Training distress and performance readiness: Laboratory and field validation of a brief selfâ€eport measure. Scandinavian Journal of Medicine and Science in Sports, 2014, 24, e483-490.	2.9	27
135	Interference between Concurrent Resistance and Endurance Exercise: Molecular Bases and the Role of Individual Training Variables. Sports Medicine, 2014, 44, 743-762.	6.5	224
136	Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content?. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1266-1275.	2.4	142
137	Effects of sports drinks on the maintenance of physical performance during 3 tennis matches: a randomized controlled study. Journal of the International Society of Sports Nutrition, 2014, 11, 46.	3.9	18
138	EPAS1 gene variants are associated with sprint/power athletic performance in two cohorts of European athletes. BMC Genomics, 2014, 15, 382.	2.8	19
139	ACTN3 R577X polymorphism and team-sport performance: A study involving three European cohorts. Journal of Science and Medicine in Sport, 2014, 17, 102-106.	1.3	42

Gene variants within the COLIAl gene are associated with reduced anterior cruciate ligament injury in

145 Genes for Elite Power and Sprint Performance: ACTN3 Leads the Way. Sports Medicine, 2013, 43, 80 : Effects of a low- or a high-carbohydrate diet on performance, energy system contribution, and
2013, 38, 928-934.
Position statementâ $€^{\prime \prime}$ altitude training for improving team-sport playersâ€т performance: current
knowledge and unresolved issues. British Journal of Sports Medicine, 2013, 47, i8-i16.
$6.7 \quad 54$

Seasonal Changes in Physical Performance and Heart Rate Variability in High Level Futsal Players. International Journal of Sports Medicine, 2013, 34, 424-430.
1.7

95
High-Intensity Re-Warm-Ups Enhance Soccer Performance. International Journal of Sports Medicine,
$2013,34,800-805$.
$1.7 \quad 41$

Prior Exercise Reduces Fast-Start Duration and End-Spurt Magnitude during Cycling Time-Trial. International Journal of Sports Medicine, 2013, 34, 736-741.
1.7

12

Prevalence of cardio-respiratory factors in the occurrence of the decrease in oxygen uptake during supra-maximal, constant-power exercise. SpringerPlus, 2013, 2, 651.
1.2

Strength-Training with Whole-Body Vibration in Long-Distance Runners: A Randomized Trial.
International Journal of Sports Medicine, 2013, 34, 917-923.

Determinants of team-sport performance: implications for altitude training by team-sport athletes.
British Journal of Sports Medicine, 2013, 47, i17-i21.

Neuromuscular Adjustments of the Quadriceps Muscle after Repeated Cycling Sprints. PLoS ONE, 2013,
8, e61793.

Caffeine Alters Anaerobic Distribution and Pacing during a 4000-m Cycling Time Trial. PLoS ONE, 2013,
8, e75399.

Interaction of Central and Peripheral Factors during Repeated Sprints at Different Levels of Arterial
156 O2 Saturation. PLoS ONE, 2013, 8, e77297.
2.5

68

Repeated sprint ability in elite water polo players and swimmers and its relationship to aerobic and anaerobic performance. Journal of Sports Science and Medicine, 2013, 12, 738-43.

Listening to Music in the First, but not the Last 1.5 â€\%okm of a $5-\mathrm{km}$ Running Trial Alters Pacing Strategy and Improves Performance. International Journal of Sports Medicine, 2012, 33, 813-818.

The effect of warm up on single and intermittent-sprint performance. Journal of Sports Sciences, 2012,
30, 833-840.

Repeated Sprints Alter Signaling Related to Mitochondrial Biogenesis in Humans. Medicine and Science in Sports and Exercise, 2012, 44, 827-834.

The effects of warm-up on intermittent sprint performance in a hot and humid environment. Journal of Sports Sciences, 2012, 30, 967-974.
2.0 11

163	The Effect of Warm-Ups Incorporating Different Volumes of Dynamic Stretching on 10- and 20-m Sprint Performance in Highly Trained Male Athletes. Journal of Strength and Conditioning Research, 2012, 26, 63-72.	2.1	56
164	The effect of warm-up on intermittent sprint performance and selected thermoregulatory parameters. Journal of Science and Medicine in Sport, 2012, 15, 451-456.	1.3	41
165	Fatigue during intermittentâ€sprint exercise. Clinical and Experimental Pharmacology and Physiology, 2012, 39, 836-841.	1.9	54
166	Effects of acute and chronic exercise on sarcolemmal MCT1 and MCT4 contents in human skeletal muscles: current status. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1-R14.	1.8	85
167	The AuthorsÊ1/4 Response. Sports Medicine, 2012, 42, 167-168.	6.5	0
168	The AuthorsÊ¹/4 Response:. Sports Medicine, 2012, 42, 172-173.	6.5	0
169	The ACTN3 R577X Polymorphism across Three Groups of Elite Male European Athletes. PLoS ONE, 2012, 7, e43132.	2.5	75
170	The Recovery of Repeated-Sprint Exercise Is Associated with PCr Resynthesis, while Muscle pH and EMG Amplitude Remain Depressed. PLoS ONE, 2012, 7, e51977.	2.5	85
171	Effect of 10 Week Beta-Alanine Supplementation on Competition and Training Performance in Elite Swimmers. Nutrients, 2012, 4, 1441-1453.	4.1	32
172	Determinants of performance in 1,500-m runners. European Journal of Applied Physiology, 2012, 112, 3033-3043.	2.5	17
173	Mechanical work accounts for sex differences in fatigue during repeated sprints. European Journal of Applied Physiology, 2012, 112, 1429-1436.	2.5	39

458-468.Surfboard Riders. Journal of Physiological Anthropology, 2010, 29, 189-195.
199 Sodium bicarbonate ingestion prior to training improves mitochondrial adaptations in rats. American 3.5 44
Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E225-E233.MAXIMAL POWER, BUT NOT FATIGABILITY, IS GREATER DURING REPEATED SPRINTS PERFORMED IN THE200 AFTERNOON. Chronobiology International, 2010, 27, 855-864.
201 Dietary Supplements and Team-Sport Performance. Sports Medicine, 2010, 40, 995-1017. 6.5 100
Reliability of a contact and non-contact simulated team game circuit. Journal of Sports Science and
203 Enhancing Muscular Qualities in Untrained Women. Medicine and Science in Sports and Exercise, 2009, 0.4 41, 1797-1807.37
204 Effects of active warm up on thermoregulation and intermittent-sprint performance in hotconditions. Journal of Science and Medicine in Sport, 2009, 12, 196-204.1.326
205 Game sense or game nonsense?. Journal of Science and Medicine in Sport, 2009, 12, 426-427. 1.3 6
206 High-intensity exercise decreases muscle buffer capacity via a decrease in protein buffering in humanskeletal muscle. Pflugers Archiv European Journal of Physiology, 2009, 458, 929-936.
207 Methodological approach for determining optimal active warm-up intensity: predictive equations. Science and Sports, 2009, 24, 9-14.
Non-exhaustive tests for critical power estimation. Science and Sports, 2009, 24, 315-319.0.50
209 Factors Modulating Post-Activation Potentiation and its Effect on Performance of Subsequent
Explosive Activities. Sports Medicine, 2009, 39, 147-166.
6.5 503
210 Age-related differences in repeated-sprint ability in highly trained youth football players. Journal ofSports Sciences, 2009, 27, 1581-1590.2.073
211 Muscle Fatigue in Males and Females during Multiple-Sprint Exercise. Sports Medicine, 2009, 39, 257 -278. 6.5 125Influence of Hypohydration on Intermittent Sprint Performance in the Heat. International Journal of2.312
Sports Physiology and Performance, 2009, 4, 54-67. 212Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular2.5172
213 activity. European Journal of Applied Physiology, 2008, 103, 411-419.Performance and metabolism in repeated sprint exercise: effect of recovery intensity. European2.558
217 Sprint vs. Interval Training in Football. International Journal of Sports Medicine, 2008, 29, 668-674. 1.7 231
218 VÂ.O2 Responses to Running Speeds Above VÂ.O2max. International Journal of Sports Medicine, 2008, 29, 1.7 7 494-499.Validity of a Repeated-Sprint Test for Football. International Journal of Sports Medicine, 2008, 29,899-905.Effects of high-intensity training on muscle lactate transporters and postexercise recovery of muscle220 lactate and hydrogen ions in women. American Journal of Physiology - Regulatory Integrative andComparative Physiology, 2008, 295, R1991-R1998.
221 Sprint Training in Preadolescent Soccer Players. International Journal of Sports Physiology and Performance, 2008, 3, 558-562.2.3
222 Critical Power can be Estimated From Nonexhaustive Tests Based on Rating of Perceived ExertionResponses. Journal of Strength and Conditioning Research, 2008, 22, 937-943.$2.1 \quad 24$
223 Metabolic Acidosis Reduces Exercise-induced Up-regulation Of PGC-1alpha mRNA. Medicine and Science in Sports and Exercise, 2008, 40, S33. 0.4
Activity patterns, blood lactate concentrations and ratings of perceived exertion during a296-300.
225 Validity of Simple Field Tests as Indicators of Match-Related Physical Performance in Top-Level$1.7 \quad 419$
Different interpretation of the effect of two different intense training regimens on repeated sprint1.82R1459-R1459.6.788
225 Professional Soccer Players. International Journal of Sports Medicine, 2007, 28, 228-235.419
ability. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, 226
227 Effects of Active versus Passive Recovery on Thermoregulatory Strain and Performance in
Intermittent-Sprint Exercise. Medicine and Science in Sports and Exercise, 2007, 39, 872-879.0.410Fatigue Responses during Repeated Sprints Matched for Initial Mechanical Output. Medicine and0.483
Science in Sports and Exercise, 2007, 39, 2219-2225. 2286.746
Exercise-induced homeostatic perturbations provoked by singles tennis match play with reference to 229 development of fatigue. British Journal of Sports Medicine, 2007, 41, 717-722.2.5in human skeletal muscle. Journal of Applied Physiology, 2007, 102, 616-621.PLAYERS. Journal of Strength and Conditioning Research, 2007, 21, 1172-1176.
235 Incremental Exercise Test Design and Analysis. Sports Medicine, 2007, 37, 575-586.
243 Vitamin and Mineral Supplementation and Neuromuscular Recovery after a Running Race. Medicine and
Effects of chronic $\mathrm{NaHCO}\langle$ sub $>3\langle/$ sub \rangle ingestion during interval training on changes to muscle
buffer capacity, metabolism, and short-term endurance performance. Journal of Applied Physiology,
$2006,101,918-925$.
246 ACTIVITY PROFILE OF WORLD-CLASS PROFESSIONAL SURFERS DURING COMPETITION. Journal of Strength
and Conditioning Research, 2006, 20, 477-482. and Conditioning Research, 2006, 20, 477-482.

253	Response to W. Brown. Journal of Science and Medicine in Sport, 2006, 9, 38-39.	1.3	0
254	Effects of high-intensity interval training on the response during severe exercise. Journal of Science and Medicine in Sport, 2006, 9, 249-255.	1.3	23
255	Dynamic Pacing Strategies during the Cycle Phase of an Ironman Triathlon. Medicine and Science in Sports and Exercise, 2006, 38, 726-734.	0.4	51
256	Effects of Prior Exercise on Force-Velocity Test Performance and Quadriceps EMG. International Journal of Sports Medicine, 2006, 27, 212-219.	1.7	2
257	Effects of Resistance Training on H+ Regulation, Buffer Capacity, and Repeated Sprints. Medicine and Science in Sports and Exercise, 2006, 38, 2004-2011.	0.4	48
258	Effects of Caffeine on Prolonged Intermittent-Sprint Ability in Team-Sport Athletes. Medicine and Science in Sports and Exercise, 2006, 38, 578-585.	0.4	148
259	Core temperature and hydration status during an Ironman triathlon * Commentary * Commentary. British Journal of Sports Medicine, 2006, 40, 320-325.	6.7	96
260	Activity Profile of World-Class Professional Surfers During Competition: A Case Study. Journal of Strength and Conditioning Research, 2006, 20, 477.	2.1	54
261	Effects of Induced Metabolic Alkalosis on Prolonged Intermittent-Sprint Performance. Medicine and Science in Sports and Exercise, 2005, 37, 759-767.	0.4	109

271	Physiological and Metabolic Responses of Repeated-Sprint Activities. Sports Medicine, 2005, 35, 1025-1044.	6.5	548
272	Physiological Aspects of Surfboard Riding Performance. Sports Medicine, 2005, 35, 55-70.	6.5	124
273	Thermoregulatory Responses To Repeated-sprint And Continuous Exercise. Medicine and Science in Sports and Exercise, 2005, 37, S196.	0.4	0
274	The Validity of Physiological Variables to Assess Training Intensity in Kayak Athletes. International Journal of Sports Medicine, 2004, 25, 68-72.	1.7	12
275	Longitudinal assessment of the effects of field-hockey training on repeated sprint ability. Journal of Science and Medicine in Sport, 2004, 7, 323-334.	1.3	42
276	The effects of travel on team performance in the Australian national netball competition. Journal of Science and Medicine in Sport, 2004, 7, 118-122.	1.3	43
277	Muscle buffer capacity and aerobic fitness are associated with repeated-sprint ability in women. European Journal of Applied Physiology, 2004, 92, 540-7.	2.5	154
278	Timeâe"motion analysis of elite field hockey, with special reference to repeated-sprint activity. Journal of Sports Sciences, 2004, 22, 843-850.	2.0	336
279	Induced Metabolic Alkalosis Affects Muscle Metabolism and Repeated-Sprint Ability. Medicine and Science in Sports and Exercise, 2004, 36, 807-813.	0.4	200
280	Chronic Sodium Bicarbonate Ingestion Affects Training Adaptations during Severe Exercise Training. Medicine and Science in Sports and Exercise, 2004, 36, S201.	0.4	0
281	Effect of wearing an ice cooling jacket on repeat sprint performance in warm/humid conditions. British Journal of Sports Medicine, 2003, 37, 164-169.	6.7	101
282	Predictors of repeated-sprint ability in elite female hockey players. Journal of Science and Medicine in Sport, 2003, 6, 199-209.	1.3	127
283	Warm Up II. Sports Medicine, 2003, 33, 483-498.	6.5	468
284	Warm Up I. Sports Medicine, 2003, 33, 439-454.	6.5	472
285	The effect of an intermittent, high-intensity warm-up on supramaximal kayak ergometer performance. Journal of Sports Sciences, 2003, 21, 13-20.	2.0	40

Physiological predictors of flat-water kayak performance in women. European Journal of Applied
Relationship between plasma lactate parameters and muscle characteristics in female cyclists.The Duration of Predicting Trials Influences Time to Fatigue at Critical Power. Journal of Science and
Medicine in Sport, 1998, 1, 213-218.$1.3 \quad 14$
293 Medicine in Sport, 1998, 1, 213-218.1.357
The effect of stage duration on the calculation of peak $\mathrm{VI} \ddagger \mathrm{O} 2$ during cycle ergometry. Journal ofScience and Medicine in Sport, 1998, 1, 171-178.
295 The Critical Power Function is Dependent on the Duration of the Predictive Exercise Tests Chosen. 1.7 109
296 The relationship between plasma lactate parameters, Wpeak and 1-h0.4190Reliability of a 1-h endurance performance test in trained female cyclists. Medicine and Science inSports and Exercise, 1997, 29, 554-559.
$0.4 \quad 36$

Ramp and constant power trials produce equivalent critical power estimates. Medicine and Science in Sports and Exercise, 1997, 29, 833-836.

[^0]: Source: https:/|exaly.com/author-pdf/5725184/publications.pdf
 Version: 2024-02-01

