Ganjar Fadillah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5725075/publications.pdf

Version: 2024-02-01

36	913	17 h-index	29
papers	citations		g-index
36	36	36	848
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Flow photocatalysis system-based functionalized graphene oxide-ZnO nanoflowers for degradation of a natural humic acid. Environmental Science and Pollution Research, 2022, 29, 9883-9891.	5.3	11
2	Highly Visible Light Photodegradation of RhB as Synthetic Organic Dye Pollutant Over TiO2-Modified Reduced Graphene Oxide. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 85-93.	3.7	11
3	Magnetic-silica nanocomposites and the functionalized forms for environment and medical applications: A review. Inorganic Chemistry Communication, 2022, 137, 109213.	3.9	28
4	Transformation growth of nanoflower-like GO-ZnO as an active site platform for H2S sensors. Chemical Physics Letters, 2022, 790, 139351.	2.6	5
5	Clay-Supported Metal Oxide Nanoparticles in Catalytic Advanced Oxidation Processes: A Review. Nanomaterials, 2022, 12, 825.	4.1	20
6	Hydrothermal assisted synthesis of titanium dioxide nanoparticles modified graphene with enhanced photocatalytic performance. Journal of Industrial and Engineering Chemistry, 2022, 113, 411-418.	5 . 8	16
7	Visible light-responsive photocatalyst of SnO ₂ /rGO prepared using <i>Pometia pinnata</i> leaf extract. Open Chemistry, 2021, 19, 174-183.	1.9	13
8	A novel electrochemical synthesis of TiO2 nanoparticles and its application as bisphenol-B sensor. AIP Conference Proceedings, 2021, , .	0.4	2
9	Enhanced performance of magnetic montmorillonite nanocomposite as adsorbent for Cu(II) by hydrothermal synthesis. Journal of Environmental Chemical Engineering, 2021, 9, 104968.	6.7	14
10	Nanoflower-like composites of ZnO/SiO2 synthesized using bamboo leaves ash as reusable photocatalyst. Arabian Journal of Chemistry, 2021, 14, 102973.	4.9	28
11	Smart advanced responsive materials, synthesis methods and classifications: from Lab to applications. Journal of Polymer Research, 2021, 28, 1.	2.4	12
12	Recent Progress in Low-Cost Catalysts for Pyrolysis of Plastic Waste to Fuels. Catalysts, 2021, 11, 837.	3 . 5	57
13	Synthesis of iron-based magnetic nanocomposites: A review. Arabian Journal of Chemistry, 2021, 14, 103301.	4.9	31
14	Efficient detection of CO2 by nanocomposites: Environmental and energy technologies. Trends in Environmental Analytical Chemistry, 2021, 32, e00142.	10.3	19
15	Analytical methods for mercury speciation, detection, and measurement in water, oil, and gas. TrAC - Trends in Analytical Chemistry, 2020, 132, 116016.	11.4	46
16	A sensitive electrochemical sensor based on functionalized graphene oxide/SnO2 for the determination of eugenol. Microchemical Journal, 2020, 159, 105353.	4.5	43
17	Titania-nanorods modified carbon paste electrode for the sensitive voltammetric determination of BPA in exposed bottled water. Sensing and Bio-Sensing Research, 2020, 30, 100391.	4.2	11
18	Surface modification of natural zeolite with silane agent as effective materials for removal of ammonium. AIP Conference Proceedings, 2020, , .	0.4	3

#	Article	IF	CITATIONS
19	Sonocatalytic degradation of rhodamine B using tin oxide/ montmorillonite. Journal of Water Process Engineering, 2020, 37, 101418.	5. 6	18
20	Trends in polymers functionalized nanostructures for analysis of environmental pollutants. Trends in Environmental Analytical Chemistry, 2020, 26, e00084.	10.3	44
21	Magnetic iron oxide/clay nanocomposites for adsorption and catalytic oxidation in water treatment applications. Open Chemistry, 2020, 18, 1148-1166.	1.9	47
22	Glycerol to Solketal for Fuel Additive: Recent Progress in Heterogeneous Catalysts. Energies, 2019, 12, 2872.	3.1	50
23	Electrochemical removal of methylene blue using alginate-modified graphene adsorbents. Chemical Engineering Journal, 2019, 378, 122140.	12.7	119
24	Recent trends in the design of chemical sensors based on graphene–metal oxide nanocomposites for the analysis of toxic species and biomolecules. TrAC - Trends in Analytical Chemistry, 2019, 120, 115660.	11.4	88
25	Nanoparticles as components of electrochemical sensing platforms for the detection of petroleum pollutants: A review. TrAC - Trends in Analytical Chemistry, 2019, 118, 194-206.	11.4	49
26	Enhanced electrochemical degradation of 4-Nitrophenol molecules using novel Ti/TiO2-NiO electrodes. Journal of Molecular Liquids, 2019, 289, 111108.	4.9	70
27	Preliminary Study of Photocatalytic Degradation of Methylene Blue Dye using Magnetic Alginate/Fe3O4 (Alg/Fe3O4) Nanocomposites. Eksakta: Jurnal Ilmu-Ilmu MIPA, 2019, 19, 26-34.	0.2	3
28	\hat{l}_{\pm} -keratin/Alginate Biosorbent for Removal of Methylene Blue on Aqueous Solution in a Batch System. IOP Conference Series: Materials Science and Engineering, 2018, 333, 012052.	0.6	5
29	Preparation of TiO2 nanorods as a coating material on Pt electrode for electrodegradation of methyl orange. , 2018, , .		3
30	Synthesis of TiO ₂ NRs - ZnO Composite for Dye Sensitized Solar Cell Photoanodes. IOP Conference Series: Earth and Environmental Science, 2017, 75, 012006.	0.3	2
31	Enhanced Photovoltaic Performance by Surface Modification of TiO2 Nanorods with Aminopropyltrimethoxysilane (APTMS). IOP Conference Series: Earth and Environmental Science, 2017, 75, 012005.	0.3	4
32	Thin Film ZnO Coated on FTO/TiO2 as an Anti Reflection Coatingfor EnhancingVisible Light Harversting in Dye Sensitized Solar Cells System. Procedia Chemistry, 2016, 19, 632-637.	0.7	15
33	The co-pigmentation of anthocyanin isolated from mangosteen pericarp (<i>Garcinia Mangostana) Tj ETQq1 1 C and Engineering, 2016, 107, 012061.</i>	0.784314 r 0.6	gBT /Overloc 22
34	Alternative natural dyes in water purification: Anthocyanin as TiO2-sensitizer in rhodamin B photoelectrodegradation. , 2015, , .		1
35	Effect of pH CaCl ₂ solution on graphene oxide encapsulated alginate (GO-AL) for removing methylene blue dyes. IOP Conference Series: Materials Science and Engineering, 0, 509, 012143.	0.6	3
36	Preliminary Study of Photocatalytic Degradation of Methylene Blue Dye using Magnetic Alginate/Fe3O4 (Alg/Fe3O4) Nanocomposites. Eksakta, 0, , 26-34.	0.2	0