Ya-Ping Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5724930/publications.pdf Version: 2024-02-01

YA-PING DENG

#	Article	IF	CITATIONS
1	Eutectic Etching toward Inâ€Plane Porosity Manipulation of Clâ€Terminated MXene for Highâ€Performance Dualâ€Ion Battery Anode. Advanced Energy Materials, 2022, 12, 2102493.	10.2	37
2	Linker-Compensated Metal–Organic Framework with Electron Delocalized Metal Sites for Bifunctional Oxygen Electrocatalysis. Journal of the American Chemical Society, 2022, 144, 4783-4791.	6.6	86
3	Materials Engineering toward Durable Electrocatalysts for Proton Exchange Membrane Fuel Cells. Advanced Energy Materials, 2022, 12, .	10.2	61
4	Cationic–anionic redox couple gradient to immunize against irreversible processes of Li-rich layered oxides. Journal of Materials Chemistry A, 2021, 9, 2325-2333.	5.2	20
5	Modulating Metal–Organic Frameworks as Advanced Oxygen Electrocatalysts. Advanced Energy Materials, 2021, 11, 2003291.	10.2	105
6	3d-Orbital Occupancy Regulated Ir-Co Atomic Pair Toward Superior Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2021, 11, 8837-8846.	5.5	110
7	From bulk to interface: electrochemical phenomena and mechanism studies in batteries <i>via</i> electrochemical quartz crystal microbalance. Chemical Society Reviews, 2021, 50, 10743-10763.	18.7	48
8	Recent Progress on Highâ€Performance Cathode Materials for Zincâ€ion Batteries. Small Structures, 2021, 2, 2000064.	6.9	85
9	Hierarchically Porous Multimetalâ€Based Carbon Nanorod Hybrid as an Efficient Oxygen Catalyst for Rechargeable Zinc–Air Batteries. Advanced Functional Materials, 2020, 30, 1908167.	7.8	105
10	d-Orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery. Nature Communications, 2020, 11, 5858.	5.8	109
11	Deep-Breathing Honeycomb-like Co-Nx-C Nanopolyhedron Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries. IScience, 2020, 23, 101404.	1.9	38
12	Rücktitelbild: Ternary Snâ€Tiâ€O Electrocatalyst Boosts the Stability and Energy Efficiency of CO ₂ Reduction (Angew. Chem. 31/2020). Angewandte Chemie, 2020, 132, 13224-13224.	1.6	0
13	Ternary Snâ€īiâ€O Electrocatalyst Boosts the Stability and Energy Efficiency of CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 12860-12867.	7.2	68
14	Ternary Snâ€īiâ€O Electrocatalyst Boosts the Stability and Energy Efficiency of CO 2 Reduction. Angewandte Chemie, 2020, 132, 12960-12967.	1.6	8
15	Revealing the Rapid Electrocatalytic Behavior of Ultrafine Amorphous Defective Nb ₂ O _{5–<i>x</i>} Nanocluster toward Superior Li–S Performance. ACS Nano, 2020, 14, 4849-4860.	7.3	201
16	Constructing Safe and Durable Highâ€Voltage P2 Layered Cathodes for Sodium Ion Batteries Enabled by Molecular Layer Deposition of Alucone. Advanced Functional Materials, 2020, 30, 1910251.	7.8	47
17	Niâ€Rich/Coâ€Poor Layered Cathode for Automotive Liâ€lon Batteries: Promises and Challenges. Advanced Energy Materials, 2020, 10, 1903864.	10.2	242
18	The Current State of Aqueous Zn-Based Rechargeable Batteries. ACS Energy Letters, 2020, 5, 1665-1675.	8.8	271

YA-PING DENG

#	Article	IF	CITATIONS
19	Dynamic electrocatalyst with current-driven oxyhydroxide shell for rechargeable zinc-air battery. Nature Communications, 2020, 11, 1952.	5.8	185
20	Sodium Ion Batteries: 3D Nanowire Arrayed Cu Current Collector toward Homogeneous Alloying Anode Deposition for Enhanced Sodium Storage (Adv. Energy Mater. 28/2019). Advanced Energy Materials, 2019, 9, 1970111.	10.2	2
21	3D Nanowire Arrayed Cu Current Collector toward Homogeneous Alloying Anode Deposition for Enhanced Sodium Storage. Advanced Energy Materials, 2019, 9, 1900673.	10.2	32
22	Multidimensional Ordered Bifunctional Air Electrode Enables Flash Reactants Shuttling for Highâ€Energy Flexible Znâ€Air Batteries. Advanced Energy Materials, 2019, 9, 1900911.	10.2	133
23	"Ship in a Bottle―Design of Highly Efficient Bifunctional Electrocatalysts for Long-Lasting Rechargeable Zn–Air Batteries. ACS Nano, 2019, 13, 7062-7072.	7.3	120
24	Synergistic Engineering of Defects and Architecture in Binary Metal Chalcogenide toward Fast and Reliable Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1900228.	10.2	177
25	Revealing of the Activation Pathway and Cathode Electrolyte Interphase Evolution of Li-Rich 0.5Li ₂ MnO ₃ ·0.5LiNi _{0.3} Co _{0.3} Mn _{0.4} O _{2< Cathode by in Situ Electrochemical Quartz Crystal Microbalance. ACS Applied Materials & amp; Interfaces, 2019, 11, 16214-16222.}	/sub> 4.0	23
26	Zinc–Air Batteries: An Oxygenâ€Vacancyâ€Rich Semiconductorâ€Supported Bifunctional Catalyst for Efficient and Stable Zinc–Air Batteries (Adv. Mater. 6/2019). Advanced Materials, 2019, 31, 1970043.	11.1	3
27	Layerâ€Based Heterostructured Cathodes for Lithiumâ€Ion and Sodiumâ€Ion Batteries. Advanced Functional Materials, 2019, 29, 1808522.	7.8	82
28	An Oxygenâ€Vacancyâ€Rich Semiconductorâ€Supported Bifunctional Catalyst for Efficient and Stable Zinc–Air Batteries. Advanced Materials, 2019, 31, e1806761.	11.1	133
29	Sodiumâ€Alginateâ€Based Binders for Lithiumâ€Rich Cathode Materials in Lithiumâ€Ion Batteries to Suppress Voltage and Capacity Fading. ChemElectroChem, 2018, 5, 1321-1329.	1.7	29
30	Two-Dimensional Phosphorus-Doped Carbon Nanosheets with Tunable Porosity for Oxygen Reactions in Zinc-Air Batteries. ACS Catalysis, 2018, 8, 2464-2472.	5.5	175
31	Interpenetrating Triphase Cobaltâ€Based Nanocomposites as Efficient Bifunctional Oxygen Electrocatalysts for Long‣asting Rechargeable Zn–Air Batteries. Advanced Energy Materials, 2018, 8, 1702900.	10.2	242
32	3D Porous Carbon Sheets with Multidirectional Ion Pathways for Fast and Durable Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1702381.	10.2	165
33	A Natural Biopolymer Film as a Robust Protective Layer to Effectively Stabilize Lithiumâ€Metal Anodes. Small, 2018, 14, e1801054.	5.2	61
34	Zn-air Batteries: Interpenetrating Triphase Cobalt-Based Nanocomposites as Efficient Bifunctional Oxygen Electrocatalysts for Long-Lasting Rechargeable Zn-Air Batteries (Adv. Energy Mater. 15/2018). Advanced Energy Materials, 2018, 8, 1870068.	10.2	13
35	Layered/Spinel Heterostructured and Hierarchical Micro/Nanostructured Li-Rich Cathode Materials with Enhanced Electrochemical Properties for Li-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2017, 9, 21065-21070.	4.0	79
36	Hierarchical Porous Double-Shelled Electrocatalyst with Tailored Lattice Alkalinity toward Bifunctional Oxygen Reactions for Metal–Air Batteries. ACS Energy Letters, 2017, 2, 2706-2712.	8.8	74

YA-PING DENG

#	Article	IF	CITATIONS
37	Highly Nitrogen-Doped Three-Dimensional Carbon Fibers Network with Superior Sodium Storage Capacity. ACS Applied Materials & Interfaces, 2017, 9, 28604-28611.	4.0	38
38	Improving the Electrochemical Performance of Li _{1.14} Ni _{0.18} Mn _{0.62} O ₂ by Modulating Structure Defects via a Molten Salt Method. ChemElectroChem, 2016, 3, 98-104.	1.7	13
39	Suppressing the voltage-fading of layered lithium-rich cathode materials via an aqueous binder for Li-ion batteries. Chemical Communications, 2016, 52, 4683-4686.	2.2	85
40	Layered Li _{1.3} Mn _{0.58} Ni _{0.12} Co _{0.11} O _{2+<i>î´</i>} Cathode Material for Lithiumâ€Ion Batteries with High Reversible Capacity. ChemElectroChem, 2016, 3, 2027-2030.	1.7	9
41	A Synergistic Effect in a Composite Cathode Consisting of Spinel and Layered Structures To Increase the Electrochemical Performance for Li-Ion Batteries. Journal of Physical Chemistry C, 2016, 120, 25647-25656.	1.5	13
42	Layered/spinel heterostructured Li-rich materials synthesized by a one-step solvothermal strategy with enhanced electrochemical performance for Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 257-263.	5.2	111
43	Effect of synthetic routes on the rate performance of Li-rich layered Li _{1.2} Mn _{0.56} Ni _{0.12} Co _{0.12} O ₂ . Journal of Materials Chemistry A, 2015, 3, 5197-5203.	5.2	65
44	Synthesis of single crystalline hexagonal nanobricks of LiNi1/3Co1/3Mn1/3O2 with high percentage of exposed {010} active facets as high rate performance cathode material for lithium-ion battery. Journal of Materials Chemistry A, 2013, 1, 3860.	5.2	195