Tetsuji Saito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5724904/publications.pdf

Version: 2024-02-01

		430874	5	552781	
80	872	18		26	
papers	citations	h-index		g-index	
% 0	90	80		E.C.C	
80	80	80		566	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Magnetic Properties of Sm(FeTi)â,â,, Hot-Deformed Magnets. IEEE Transactions on Magnetics, 2022, 58, 1-4.	2.1	2
2	Magnetic properties of (Sm,Zr)Fe10 and (Sm,Zr)Fe9.5Ti0.5 melt-spun ribbons. Journal of Magnetism and Magnetic Materials, 2022, 542, 168573.	2.3	3
3	Room temperature magnetic properties of Mn-Ga-B melt-spun ribbons. AIP Advances, 2022, 12, 035250.	1.3	О
4	Production of (Sm,Zr)(Fe,Co)3 magnets. Heliyon, 2022, , e09612.	3.2	0
5	Magnetic Properties of (Ce,Sm)Fe ₁₁ Ti Magnets. Materials Transactions, 2022, 63, 1097-1100.	1.2	1
6	Magnetic properties of (Sm,Zr)(Fe,Co)5 alloys produced by the melt-spinning technique. Journal of Alloys and Compounds, 2021, 859, 157753.	5 . 5	0
7	High-coercivity Sm(Fe,V,Ti)12 bulk magnets. Materials Research Bulletin, 2021, 133, 111060.	5.2	6
8	Magnetic and thermoelectric properties of Co2MnT (T = Ga, Si) Heusler compounds. Physica B: Condensed Matter, 2021, 603, 412761.	2.7	10
9	Magnetic properties of (Sm,Zr)Fe5 alloys and their nitrides. AIP Advances, 2021, 11, 015105.	1.3	O
10	Structures and magnetic properties of SmFe5â^'xTix melt-spun ribbons with SmFe5 and Sm5Fe17 phases. Journal of Magnetism and Magnetic Materials, 2021, 535, 168070.	2.3	1
11	Structures and magnetic properties of (Ce,Sm)Co2Fe2B melt-spun ribbons. Journal of Magnetism and Magnetic Materials, 2020, 513, 167189.	2.3	1
12	Synthesis of SmFe5 intermetallic compound. AIP Advances, 2020, 10, .	1.3	4
13	Production of anisotropic SmFe3 magnets by hot deformation. AIP Advances, 2020, 10, 015134.	1.3	1
14	Magnetic and Thermoelectric Properties of Fe–Ti–Sn Alloys. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	1
15	Synthesis of Sm(Co,Fe)4B compounds by rapid quenching and subsequent heat treatment. Intermetallics, 2019, 107, 6-9.	3.9	8
16	Magnetic properties of SmFe12-based magnets produced by spark plasma sintering method. Journal of Alloys and Compounds, 2019, 773, 1018-1022.	5.5	19
17	Magnetic Properties of SmFe ₃ -Type Sm–Zr–Fe–Co–Ti Melt-Spun Ribbons. Materials Transactions, 2019, 60, 1384-1389.	1.2	1
18	Effects of titanium and zirconium addition on magnetic properties of Sm2Fe17 melt-spun ribbons. AIP Advances, 2018, 8, 056230.	1.3	1

#	Article	IF	Citations
19	Sm5(Fe,Ti)17 melt-spun ribbons with high coercivity. AIP Advances, 2018, 8, 056228.	1.3	2
20	High-coercivity SmCo5∫î±-Fe nanocomposite magnets. Journal of Alloys and Compounds, 2018, 735, 218-223.	5.5	15
21	Magnetic and thermoelectric properties of melt-spun ribbons of Fe2XAl (X = Co, Ni) Heusler compounds. Journal of Applied Physics, 2018, 124, 075105.	2.5	11
22	Coercivity of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering method. AIP Advances, 2017, 7, .	1.3	2
23	Magnetic properties of Sm-Fe-N bulk magnets produced from Cu-plated Sm-Fe-N powder. AIP Advances, 2017, 7, .	1.3	19
24	Magnetic Properties of Sm-Fe-N/Co-B Composite Magnets Prepared by Chemical Reduction. Advances in Condensed Matter Physics, 2017, 2017, 1-4.	1.1	1
25	High coercivity in Mn-Ga-Cu alloys. AIP Advances, 2016, 6, .	1.3	6
26	Enhancement of magnetic properties by Zn addition in Nd-Fe-B hot-deformed magnets produced by spark plasma sintering method. Journal of Alloys and Compounds, 2016, 687, 662-666.	5.5	16
27	Magnetic Properties of Nd-Fe-B Anisotropic Magnets Prepared by Spark Plasma Sintering Method. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 647-651.	0.2	2
28	Production of Sm–Fe–N bulk magnets by the spark plasma sintering method with dynamic compression. Journal of Alloys and Compounds, 2016, 673, 195-198.	5.5	12
29	Magnetic properties of Sm-Fe-N bulk magnets prepared from Sm2Fe17N3 melt-spun ribbons. Journal of Applied Physics, 2015, 117, .	2.5	8
30	Magnetic properties of Sm ₅ Fe ₁₇ melt-spun ribbons and their borides. AIMS Materials Science, 2015, 2, 392-400.	1.4	2
31	Magnetic properties of Co-Zr-B magnets produced by spark plasma sintering method. Journal of Applied Physics, 2014, 115, 17A749.	2.5	6
32	Magnetic properties of Mn–Bi melt-spun ribbons. Journal of Magnetism and Magnetic Materials, 2014, 349, 9-14.	2.3	35
33	Production of Sm–Fe–N bulk magnets by spark plasma sintering method. Journal of Magnetism and Magnetic Materials, 2014, 369, 184-188.	2.3	26
34	Magnetic properties of SmCo5â^'xFex (x=0–4) melt-spun ribbon. Journal of Alloys and Compounds, 2014, 585, 423-427.	5.5	33
35	Magnetic Properties of Sm-Zr-Fe Melt-Spun Ribbons. IEEE Transactions on Magnetics, 2013, 49, 3345-3348.	2.1	4
36	Microstructures of Coâ€"Zrâ€"B alloys produced by melt-spinning technique. Journal of Alloys and Compounds, 2013, 572, 124-128.	5.5	23

#	Article	IF	CITATIONS
37	Magnetic properties of isotropic Sm–Fe–N magnets produced by compression shearing method. Journal of Applied Physics, 2012, 111, .	2.5	5
38	Hard magnetic properties of Mn-Ga melt-spun ribbons. Journal of Applied Physics, 2012, 112, .	2.5	34
39	Magnetic properties of Sm–Fe–Ti nanocomposite magnets with a ThMn12 structure. Journal of Alloys and Compounds, 2012, 519, 144-148.	5.5	33
40	Magnetic properties of Sm5Fe17/Fe composite magnets produced by spark plasma sintering method. Journal of Applied Physics, 2012, 111, 07B534.	2.5	1
41	Structures and magnetic properties of Sm5Fe17 melt-spun ribbon. Journal of Applied Physics, 2012, 111, 07E322.	2.5	1
42	Magnetic properties of Pr-Fe-Ti-B nanocomposite magnets produced by spark plasma sintering method. Journal of Applied Physics, 2011, 109, 07A754.	2.5	3
43	Hard magnetic properties of anisotropic Sm–Fe–N magnets produced by compression shearing method. Journal of Magnetism and Magnetic Materials, 2011, 323, 2154-2157.	2.3	22
44	Magnetic properties of (Sm,Y)5Fe17 melt-spun ribbons. Journal of Applied Physics, 2011, 109, 07A724.	2.5	3
45	Ferromagnetic carbon materials prepared from polyacrylonitrile. Applied Physics Letters, 2011, 98, .	3.3	12
46	Relationship between hydrogen content and magnetic properties of diamondlike carbon produced by the rf plasma-enhanced chemical vapor deposition method. Journal of Applied Physics, 2010, 107, 073522.	2.5	4
47	Electrical resistivity and magnetic properties of Nd–Fe–B alloys produced by melt-spinning technique. Journal of Alloys and Compounds, 2010, 505, 23-28.	5.5	25
48	High coercivity Sm–Fe melt-spun ribbon. Journal of Applied Physics, 2009, 105, 07A716.	2.5	9
49	Magnetic properties of Sm5Fe17-based magnets produced by spark plasma sintering method. IOP Conference Series: Materials Science and Engineering, 2009, 1, 012032.	0.6	1
50	Synthesis and magnetic properties of (Pr1â^'xSmx)5Fe17 (x=0â€"1) phase. Journal of Alloys and Compounds, 2009, 488, 13-17.	5.5	2
51	Magnetic properties of anisotropic Sm–Fe–N bulk magnets produced by spark plasma sintering method. Journal of Magnetism and Magnetic Materials, 2008, 320, 1893-1897.	2.3	12
52	Consolidation of Sm5Fe17 powder by spark plasma sintering method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 150, 38-42.	3.5	6
53	Synthesis and magnetic properties of Sm3(Fe, Ti)29 compound. Journal of Alloys and Compounds, 2008, 454, 210-213.	5.5	2
54	Magnetic properties of Sm5(Fe,Co)17 melt-spun ribbons. Journal of Applied Physics, 2008, 103, 07E118.	2.5	3

#	Article	IF	CITATIONS
55	Structures and magnetic properties of Co–Ni–Ga melt-spun ribbons. Journal of Applied Physics, 2008, 103, 07B322.	2.5	8
56	Annealing of Amorphous Sm ₅ Fe ₁₇ Melt-Spun Ribbon. Materials Transactions, 2008, 49, 1446-1450.	1.2	6
57	Structures and magnetic properties of Sm-Fe-N bulk magnets produced by the spark plasma sintering method. Journal of Materials Research, 2007, 22, 3130-3136.	2.6	13
58	Magnetization process of Sm5Fe17 magnets. Journal of Applied Physics, 2007, 102, 023914.	2.5	7
59	Synthesis and magnetic properties of (Nd1â^'xSmx)5Fe17â€^(x=â€"1) phase. Applied Physics Letters, 2007, 91, .	3.3	5
60	High coercivity in Sm5Fe17 melt-spun ribbon. Journal of Alloys and Compounds, 2007, 440, 315-318.	5.5	28
61	Synthesis and magnetic properties of Sm5Fe17 hard magnetic phase. Scripta Materialia, 2007, 57, 457-460.	5.2	15
62	Structures and magnetic properties of Nd–Fe alloys produced by the glass slag method. Journal of Alloys and Compounds, 2006, 414, 88-93.	5.5	3
63	Recovery of rare earths from sludges containing rare-earth elements. Journal of Alloys and Compounds, 2006, 425, 145-147.	5.5	54
64	Magnetic properties of Sm–Fe–N bulk magnets produced by compression shearing method. Journal of Applied Physics, 2006, 99, 08B509.	2.5	4
65	Anisotropic Sm–Fe–N magnets produced by compression shearing method. Applied Physics Letters, 2006, 89, 162511.	3.3	19
66	Magnetic Properties of Pr–Fe–Al Alloys Produced by the Metallic Mold Casting Method. Materials Transactions, 2005, 46, 2940-2944.	1.2	7
67	Sm–Fe–N bulk magnets produced by compression shearing method. Scripta Materialia, 2005, 53, 1117-1121	. 5.2	33
68	New method for the production of bulk amorphous materials of Nd–Fe–B alloys. Journal of Materials Research, 2005, 20, 563-566.	2.6	17
69	Structures and magnetic properties of Nd–Fe–Ti alloys produced by melt-spinning technique. Journal of Alloys and Compounds, 2005, 402, 242-245.	5.5	5
70	Effects of cooling rate on microstructures and magnetic properties of Nd–Fe–B alloys. Journal of Alloys and Compounds, 2004, 363, 268-275.	5.5	21
71	Magnetic properties of Ti–Fe alloy powders prepared by mechanical grinding. Journal of Alloys and Compounds, 2004, 364, 113-116.	5.5	12
72	Magnetic properties of Mn–Al system alloys produced by mechanical alloying. Journal of Applied Physics, 2003, 93, 8686-8688.	2.5	35

TETSUJI SAITO

#	Article	IF	CITATION
7 3	High performance Co–Zr–B melt-spun ribbons. Applied Physics Letters, 2003, 82, 2305-2307.	3.3	57
74	The Extraction of Sm from Sm-Co alloys by the Glass Slag Method. Materials Transactions, 2003, 44, 637-640.	1.2	11
75	Magnetic properties of Nd–Fe binary alloys produced by a metallic mold casting method. Journal of Applied Physics, 2002, 91, 8828.	2.5	19
76	Microstructures and Magnetic Properties of Nd-Fe-B-X (X=Co, Zr) Alloys Produced by a Metallic Mold Casting Method. Materials Transactions, 2001, 42, 1893-1896.	1.2	2
77	Microstructure of Nd–Fe–B Alloys Solidified under Microgravity Conditions. Materials Transactions, JIM, 2000, 41, 1121-1124.	0.9	9
78	Production of iron nitrides by mechanical alloying. Journal of Applied Physics, 2000, 87, 6514-6516.	2.5	18
79	The magnetic properties of Nd–Fe–B powders produced by mechanical grinding in hydrogen atmosphere. Journal of Applied Physics, 1999, 85, 5687-5689.	2.5	3
80	Shock Consolidation of Amorphous Nd-Fe-B Powders with Lower Nd Content. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1998, 62, 457-461.	0.4	1