
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5724626/publications.pdf Version: 2024-02-01

MADIA A CIL

#	Article	IF	CITATIONS
1	Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell, 2017, 168, 473-486.e15.	28.9	397
2	Survival and Fertility of Boar Spermatozoa After Freezeâ€Thawing in Extender Supplemented With Butylated Hydroxytoluene. Journal of Andrology, 2004, 25, 397-405.	2.0	128
3	Advances in Swine <i>In Vitro</i> Embryo Production Technologies. Reproduction in Domestic Animals, 2010, 45, 40-48.	1.4	121
4	The battle of the sexes starts in the oviduct: modulation of oviductal transcriptome by X and Y-bearing spermatozoa. BMC Genomics, 2014, 15, 293.	2.8	101
5	Survival and in vitro fertility of boar spermatozoa frozen in the presence of superoxide dismutase and/or catalase. Journal of Andrology, 2005, 26, 15-24.	2.0	77
6	Adjustments on the cryopreservation conditions reduce the incidence of boar ejaculates with poor sperm freezability. Theriogenology, 2007, 67, 1436-1445.	2.1	76
7	Birth of piglets after deep intrauterine insemination with flow cytometrically sorted boar spermatozoa. Theriogenology, 2003, 59, 1605-1614.	2.1	71
8	Early Developing Pig Embryos Mediate Their Own Environment in the Maternal Tract. PLoS ONE, 2012, 7, e33625.	2.5	70
9	Challenges in Pig Artificial Insemination. Reproduction in Domestic Animals, 2006, 41, 43-53.	1.4	66
10	Successful nonsurgical deep uterine embryo transfer in pigs. Theriogenology, 2004, 61, 137-146.	2.1	65
11	Improving the efficiency of sperm technologies in pigs: the value of deep intrauterine insemination. Theriogenology, 2005, 63, 536-547.	2.1	56
12	Approaches Towards Efficient Use of Boar Semen in the Pig Industry. Reproduction in Domestic Animals, 2011, 46, 79-83.	1.4	54
13	Effect of the volume of medium and number of oocytes during in vitro fertilization on embryo development in pigs. Theriogenology, 2003, 60, 767-776.	2.1	46
14	Sex-sorting sperm by flow cytometry in pigs: Issues and perspectives. Theriogenology, 2009, 71, 80-88.	2.1	46
15	Nonsurgical deep uterine transfer of vitrified, in vivo-derived, porcine embryos is as effective as the default surgical approach. Scientific Reports, 2015, 5, 10587.	3.3	46
16	Does multivariate analysis of post-thaw sperm characteristics accurately estimate in vitro fertility of boar individual ejaculates?. Theriogenology, 2005, 64, 305-316.	2.1	45
17	Successful Non-Surgical Deep Uterine Transfer of Porcine Morulae after 24 Hour Culture in a Chemically Defined Medium. PLoS ONE, 2014, 9, e104696.	2.5	45
18	Suitability and effectiveness of single layer centrifugation using Androcoll-P in the cryopreservation protocol for boar spermatozoa. Animal Reproduction Science, 2013, 140, 173-179.	1.5	44

#	Article	IF	CITATIONS
19	Dissecting the Protective Effect of the Seminal Plasma Spermadhesin PSP-I/PSP-II on Boar Sperm Functionality. Journal of Andrology, 2006, 27, 434-443.	2.0	43
20	Factors affecting the success rate of porcine embryo vitrification by the Open Pulled Straw method. Animal Reproduction Science, 2008, 108, 334-344.	1.5	43
21	Treating boar sperm with cholesterol-loaded cyclodextrins widens the sperm osmotic tolerance limits and enhances the in vitro sperm fertilising ability. Animal Reproduction Science, 2011, 129, 209-220.	1.5	41
22	Boar semen variability and its effects on IVF efficiency. Theriogenology, 2008, 70, 1260-1268.	2.1	40
23	Heat-shock protein A8 restores sperm membrane integrity by increasing plasma membrane fluidity. Reproduction, 2014, 147, 719-732.	2.6	40
24	Effect of short periods of sperm–oocyte coincubation during in vitro fertilization on embryo development in pigs. Theriogenology, 2004, 62, 544-552.	2.1	39
25	An update on Reproductive Technologies with Potential Short-Term Application in Pig Production. Reproduction in Domestic Animals, 2005, 40, 300-309.	1.4	38
26	Dead spermatozoa in raw semenÂsamples impair inÂvitro fertilization outcomes of frozen-thawed spermatozoa. Fertility and Sterility, 2013, 100, 875-881.	1.0	38
27	Improving the Efficiency of Insemination with Sexâ€sorted Spermatozoa. Reproduction in Domestic Animals, 2008, 43, 1-8.	1.4	37
28	New developments in low-dose insemination technology. Theriogenology, 2008, 70, 1216-1224.	2.1	37
29	Recent advances toward the practical application of embryo transfer in pigs. Theriogenology, 2016, 85, 152-161.	2.1	37
30	Does Seminal Plasma PSPâ€I/PSPâ€II Spermadhesin Modulate the Ability of Boar Spermatozoa to Penetrate Homologous Oocytes In Vitro?. Journal of Andrology, 2004, 25, 1004-1012.	2.0	33
31	Adjustments in IVF system for individual boars: Value of additives and time of sperm–oocyte co-incubation. Theriogenology, 2005, 64, 1783-1796.	2.1	32
32	Motility Characteristics and Fertilizing Capacity of Boar Spermatozoa Stained with Hoechst 33342. Reproduction in Domestic Animals, 2002, 37, 369-374.	1.4	31
33	Incidence of Unilateral Fertilizations after Low Dose Deep Intrauterine Insemination in Spontaneously Ovulating Sows under Field Conditions. Reproduction in Domestic Animals, 2006, 41, 41-47.	1.4	31
34	Influence of seminal plasma PSP-I/PSP-II spermadhesin on pig gamete interaction. Zygote, 2005, 13, 11-16.	1.1	29
35	Brief coincubation of gametes in porcine in vitro fertilization: Role of sperm:oocyte ratio and post-coincubation medium. Theriogenology, 2007, 67, 620-626.	2.1	29
36	Achievements and future perspectives of embryo transfer technology in pigs. Reproduction in Domestic Animals, 2019, 54, 4-13.	1.4	29

#	Article	IF	CITATIONS
37	Influence of storage time on functional capacity of flow cytometrically sex-sorted boar spermatozoa. Theriogenology, 2005, 64, 86-98.	2.1	28
38	Effective vitrification and warming of porcine embryos using a pH-stable, chemically defined medium. Scientific Reports, 2016, 6, 33915.	3.3	27
39	Influence of sperm:oocyte ratio during in vitro fertilization of in vitro matured cumulus-intact pig oocytes on fertilization parameters and embryo development. Theriogenology, 2004, 61, 551-560.	2.1	26
40	Seminal Plasma Modifies the Transcriptional Pattern of the Endometrium and Advances Embryo Development in Pigs. Frontiers in Veterinary Science, 2019, 6, 465.	2.2	24
41	In vitro postwarming viability of vitrified porcine embryos: Effect of cryostorage length. Theriogenology, 2010, 74, 486-490.	2.1	23
42	The overlaying oil type influences in vitro embryo production: differences in composition and compound transfer into incubation medium between oils. Scientific Reports, 2017, 7, 10505.	3.3	23
43	Lowâ€Dose Insemination in Pigs: Problems and Possibilities. Reproduction in Domestic Animals, 2008, 43, 347-354.	1.4	22
44	Seminal Plasma Induces Overexpression of Genes Associated with Embryo Development and Implantation in Day-6 Porcine Blastocysts. International Journal of Molecular Sciences, 2020, 21, 3662.	4.1	22
45	Supplementation with exogenous coenzyme Q10 to media for in vitro maturation and embryo culture fails to promote the developmental competence of porcine embryos. Reproduction in Domestic Animals, 2019, 54, 72-77.	1.4	21
46	Effects of Hoechst 33342 staining and ultraviolet irradiation on mitochondrial distribution and DNA copy number in porcine oocytes and preimplantation embryos. Molecular Reproduction and Development, 2012, 79, 651-663.	2.0	20
47	Vitrification of in vitro cultured porcine two-to-four cell embryos. Theriogenology, 2007, 68, 258-264.	2.1	19
48	Capability of frozen–thawed boar spermatozoa to sustain pre-implantational embryo development. Animal Reproduction Science, 2010, 121, 145-151.	1.5	19
49	An Earlier Uterine Environment Favors the <i>In Vivo</i> Development of Fresh Pig Morulae and Blastocysts Transferred by a Nonsurgical Deep-uterine Method. Journal of Reproduction and Development, 2014, 60, 371-376.	1.4	18
50	Effects of Vitrification on the Blastocyst Gene Expression Profile in a Porcine Model. International Journal of Molecular Sciences, 2021, 22, 1222.	4.1	18
51	Design, development, and application of a non-surgical deep uterine embryo transfer technique in pigs. Animal Frontiers, 2013, 3, 40-47.	1.7	16
52	Successful laparoscopic insemination with a very low number of flow cytometrically sorted boar sperm in field conditions. Theriogenology, 2014, 81, 315-320.	2.1	16
53	The use of mineral oil during inÂvitro maturation, fertilization, and embryo culture does not impair the developmental competence of pig oocytes. Theriogenology, 2015, 83, 693-702.	2.1	16
54	Pentoxifylline added to freezing or post-thaw extenders does not improve the survival or in vitro fertilising capacity of boar spermatozoa. Reproduction, 2010, 139, 557-564.	2.6	15

#	Article	IF	CITATIONS
55	Effect of MEM vitamins and forskolin on embryo development and vitrification tolerance of in vitro-produced pig embryos. Animal Reproduction Science, 2013, 136, 296-302.	1.5	15
56	Effects of ultrashort gamete co-incubation time on porcine in vitro fertilization. Animal Reproduction Science, 2008, 106, 393-401.	1.5	14
57	The inÂvitro and inÂvivo developmental capacity of selected porcine monospermic zygotes. Theriogenology, 2013, 79, 392-398.	2.1	12
58	Developmental competence of porcine genomeâ€edited zygotes. Molecular Reproduction and Development, 2017, 84, 814-821.	2.0	11
59	<i>In Vitro</i> Fertilization (IVF) in Straws and a Short Gamete Coincubation Time Improves the Efficiency of Porcine IVF. Reproduction in Domestic Animals, 2008, 43, 747-752.	1.4	9
60	Boar seminal plasma: current insights on its potential role for assisted reproductive technologies in swine. Animal Reproduction, 2020, 17, e20200022.	1.0	9
61	Prevention of hatching of porcine morulae and blastocysts by liquid storage at 20 ŰC. Scientific Reports, 2019, 9, 6219.	3.3	8
62	The Effect of Glycerol Concentrations on the Postâ€ŧhaw <i>In Vitro</i> Characteristics of Cryopreserved Sexâ€sorted Boar Spermatozoa. Reproduction in Domestic Animals, 2012, 47, 965-974.	1.4	7
63	Effects of meiotic inhibitors and gonadotrophins on porcine oocytes in vitro maturation, fertilization and development. Reproduction in Domestic Animals, 2017, 52, 873-880.	1.4	7
64	Exogenous Melatonin in the Culture Medium Does Not Affect the Development of In Vivo-Derived Pig Embryos but Substantially Improves the Quality of In Vitro-Produced Embryos. Antioxidants, 2022, 11, 1177.	5.1	7
65	Allogeneic Embryos Disregulate Leukemia Inhibitory Factor (LIF) and Its Receptor in the Porcine Endometrium During Implantation. Frontiers in Veterinary Science, 2020, 7, 611598.	2.2	6
66	Pre-pubertal Di(2-ethylhexyl) Phthalate (DEHP) Exposure of Young Boars Did Not Affect Sperm <i>In vitro</i> Penetration Capacity of Homologous Oocytes Post-puberty. Archives of Andrology, 2007, 53, 141-147.	1.0	5
67	A Short-Term Altrenogest Treatment Post-weaning Followed by Superovulation Reduces Pregnancy Rates and Embryo Production Efficiency in Multiparous Sows. Frontiers in Veterinary Science, 2021, 8, 771573.	2.2	5
68	Immunological uterine response to pig embryos before and during implantation. Reproduction in Domestic Animals, 2022, 57, 4-13.	1.4	5
69	Eventual re-vitrification or storage in liquid nitrogen vapor does not jeopardize the practical handling and transport of vitrified pig embryos. Theriogenology, 2018, 113, 229-236.	2.1	4
70	Blastocyst-Bearing Sows Display a Dominant Anti-Inflammatory Cytokine Profile Compared to Cyclic Sows at Day 6 of the Cycle. Animals, 2020, 10, 2028.	2.3	4
71	The Open Cryotop System Is Effective for the Simultaneous Vitrification of a Large Number of Porcine Embryos at Different Developmental Stages. Frontiers in Veterinary Science, 0, 9, .	2.2	4
72	Importance of oil overlay for production of porcine embryos in vitro. Reproduction in Domestic Animals, 2018, 53, 281-286.	1.4	3

#	Article	IF	CITATIONS
73	Intrauterine Infusion of TGF-β1 Prior to Insemination, Alike Seminal Plasma, Influences Endometrial Cytokine Responses but Does Not Impact the Timing of the Progression of Pre-Implantation Pig Embryo Development. Biology, 2021, 10, 159.	2.8	3
74	Vitrification Effects on the Transcriptome of in vivo-Derived Porcine Morulae. Frontiers in Veterinary Science, 2021, 8, 771996.	2.2	3
75	Exposure of in vitro-matured porcine oocytes to SYBR-14 and fluorescence impairs their developmental capacity. Animal Reproduction Science, 2012, 133, 101-108.	1.5	2
76	The cytokine platelet factor 4 successfully replaces bovine serum albumin for the inÂvitro culture of porcine embryos. Theriogenology, 2020, 148, 201-207.	2.1	2
77	Transcriptional Profiling of Porcine Blastocysts Produced In Vitro in a Chemically Defined Culture Medium. Animals, 2021, 11, 1414.	2.3	2
78	Neither frozen–thawed seminal plasma nor commercial transforming growth factorâ€Î²1 infused intraâ€utero before insemination improved fertility and prolificacy in sows. Reproduction in Domestic Animals, 2022, , .	1.4	2
79	Equilibration time with cryoprotectants, but not melatonin supplementation during <i>in vitro</i> maturation, affects viability and metaphase plate morphology of vitrified porcine mature oocytes. Reproduction in Domestic Animals, 2022,	1.4	1