Prisca Boisguerin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5724319/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tips and Tools to Understand Direct Membrane Translocation of siRNA-Loaded WRAP-Based Nanoparticles. Methods in Molecular Biology, 2022, 2383, 475-490.	0.4	1
2	Therapeutic Peptides to Treat Myocardial Ischemia-Reperfusion Injury. Frontiers in Cardiovascular Medicine, 2022, 9, 792885.	1.1	14
3	Peptides vs. Polymers: Searching for the Most Efficient Delivery System for Mitochondrial Gene Therapy. Pharmaceutics, 2022, 14, 757.	2.0	6
4	Highway to Cell: Selection of the Best Cell-Penetrating Peptide to Internalize the CFTR-Stabilizing iCAL36 Peptide. Pharmaceutics, 2022, 14, 808.	2.0	6
5	An allosteric HTRA1-calpain 2 complex with restricted activation profile. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113520119.	3.3	2
6	Peptide-Based Nanoparticles for Therapeutic Nucleic Acid Delivery. Biomedicines, 2021, 9, 583.	1.4	31
7	In Vivo Follow-Up of Gene Inhibition in Solid Tumors Using Peptide-Based Nanoparticles for siRNA Delivery. Pharmaceutics, 2021, 13, 749.	2.0	7
8	Development of Peptide-Based Nanoparticles for Mitochondrial Plasmid DNA Delivery. Polymers, 2021, 13, 1836.	2.0	11
9	WRAP-based nanoparticles for siRNA delivery: a SAR study and a comparison with lipid-based transfection reagents. Journal of Nanobiotechnology, 2021, 19, 236.	4.2	6
10	A novel therapeutic peptide targeting myocardial reperfusion injury. Cardiovascular Research, 2020, 116, 633-644.	1.8	14
11	Anti-apoptotic peptide for long term cardioprotection in a mouse model of myocardial ischemia–reperfusion injury. Scientific Reports, 2020, 10, 18116.	1.6	7
12	Deciphering the internalization mechanism of WRAP:siRNA nanoparticles. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183252.	1.4	23
13	Fluorescent Leakage Assay to Investigate Membrane Destabilization by Cell-Penetrating Peptide. Journal of Visualized Experiments, 2020, , .	0.2	3
14	How to evaluate the cellular uptake of CPPs with fluorescence techniques: Dissecting methodological pitfalls associated to tryptophan-rich peptides. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1533-1545.	1.4	13
15	Optimization of peptide-plasmid DNA vectors formulation for gene delivery in cancer therapy exploring design of experiments. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110417.	2.5	25
16	Peptide-Based Nanoparticles to Rapidly and Efficiently "Wrap 'n Roll―siRNA into Cells. Bioconjugate Chemistry, 2019, 30, 592-603.	1.8	37
17	PIP30/FAM192A is a novel regulator of the nuclear proteasome activator PA28γ. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6477-E6486.	3.3	29
18	PEGylation rate influences peptide-based nanoparticles mediated siRNA delivery in vitro and in vivo. Journal of Controlled Release, 2017, 256, 79-91.	4.8	38

Prisca Boisguerin

#	Article	IF	CITATIONS
19	Optimization of the process of inverted peptides (PIPEPLUS) to screen PDZ domain ligands. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3111-3116.	1.0	4
20	Cardiac mGluR1 metabotropic receptors in cardioprotection. Cardiovascular Research, 2017, 113, 644-655.	1.8	9
21	A retro-inverso cell-penetrating peptide for siRNA delivery. Journal of Nanobiotechnology, 2017, 15, 34.	4.2	55
22	RNase H-Assisted Imaging of Peroxynitrite in Living Cells with 5′-Boronic Acid Modified DNA. ACS Sensors, 2016, 1, 970-974.	4.0	16
23	Optimisation of vectorisation property: A comparative study for a secondary amphipathic peptide. International Journal of Pharmaceutics, 2016, 509, 71-84.	2.6	31
24	Delivery of therapeutic oligonucleotides with cell penetrating peptides. Advanced Drug Delivery Reviews, 2015, 87, 52-67.	6.6	217
25	In Vitro Assays to Assess Exon Skipping in Duchenne Muscular Dystrophy. Methods in Molecular Biology, 2015, 1324, 317-329.	0.4	8
26	Cellular trafficking determines the exon skipping activity of Pip6a-PMO in mdx skeletal and cardiac muscle cells. Nucleic Acids Research, 2014, 42, 3207-3217.	6.5	82
27	Stereochemical Preferences Modulate Affinity and Selectivity among Five PDZ Domains that Bind CFTR: Comparative Structural and Sequence Analyses. Structure, 2014, 22, 82-93.	1.6	32
28	CtpB Assembles a Gated Protease Tunnel Regulating Cell-Cell Signaling during Spore Formation in Bacillus subtilis. Cell, 2013, 155, 647-658.	13.5	31
29	Identification of Xin-repeat proteins as novel ligands of the SH3 domains of nebulin and nebulette and analysis of their interaction during myofibril formation and remodeling. Molecular Biology of the Cell, 2013, 24, 3215-3226.	0.9	35
30	Context Dependent Effects of Chimeric Peptide Morpholino Conjugates Contribute to Dystrophin Exon-skipping Efficiency. Molecular Therapy - Nucleic Acids, 2013, 2, e124.	2.3	18
31	CPP-conjugated Anti-apoptotic Peptides as Therapeutic Tools of Ischemiareperfusion Injuries. Current Pharmaceutical Design, 2013, 19, 2970-2978.	0.9	19
32	Computational Design of a PDZ Domain Peptide Inhibitor that Rescues CFTR Activity. PLoS Computational Biology, 2012, 8, e1002477.	1.5	105
33	The agony of choice: how to find a suitable CPP for cargo delivery. Journal of Peptide Science, 2012, 18, 293-301.	0.8	7
34	Chemical Biology Approaches Reveal Conserved Features of a Câ€√erminal Processing PDZ Protease. ChemBioChem, 2012, 13, 402-408.	1.3	11
35	Systemic delivery of BH4 anti-apoptotic peptide using CPPs prevents cardiac ischemia–reperfusion injuries in vivo. Journal of Controlled Release, 2011, 156, 146-153.	4.8	37
36	Cell-Penetrating Peptides-Based Strategies for the Delivery of Splice Redirecting Antisense Oligonucleotides. Methods in Molecular Biology, 2011, 764, 75-89.	0.4	7

Prisca Boisguerin

#	Article	IF	CITATIONS
37	Design of Protein-Protein Interactions with a Novel Ensemble-Based Scoring Algorithm. Lecture Notes in Computer Science, 2011, , 361-376.	1.0	2
38	Involvement of 14-3-3 protein post-translational modifications in Giardia duodenalis encystation. International Journal for Parasitology, 2010, 40, 201-213.	1.3	19
39	Identification of IgE Binding to Api g 1â€Derived Peptides. ChemBioChem, 2010, 11, 2283-2293.	1.3	9
40	Engineering Peptide Inhibitors To Overcome PDZ Binding Promiscuity. Angewandte Chemie - International Edition, 2010, 49, 9912-9916.	7.2	44
41	A Stabilizing Influence: CAL PDZ Inhibition Extends the Halfâ€Life of ΔF508 FTR. Angewandte Chemie - International Edition, 2010, 49, 9907-9911.	7.2	63
42	Identification of a Linear Epitope in Sortilin That Partakes in Pro-neurotrophin Binding. Journal of Biological Chemistry, 2010, 285, 12210-12222.	1.6	16
43	Domain Interaction Footprint: a multi-classification approach to predict domain–peptide interactions. Bioinformatics, 2009, 25, 1632-1639.	1.8	14
44	Evaluating the coupling efficiency of phosphorylated amino acids for SPOT synthesis. Journal of Peptide Science, 2008, 14, 1309-1314.	0.8	12
45	Using hydroxymethylphenoxy derivates with the SPOT technology to generate peptides with authentic C-termini. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4038-4043.	1.0	11
46	Comparison of Cellular Uptake Using 22 CPPs in 4 Different Cell Lines. Bioconjugate Chemistry, 2008, 19, 2363-2374.	1.8	164
47	The Relative Binding Affinities of PDZ Partners for CFTR: A Biochemical Basis for Efficient Endocytic Recycling. Biochemistry, 2008, 47, 10084-10098.	1.2	102
48	Epitope Mapping of Antibodies against S-Tagged Fusion Proteins and Molecular Weight Markers. Bioscience, Biotechnology and Biochemistry, 2008, 72, 346-351.	0.6	5
49	Generation and Characterization of a Rat Monoclonal Antibody Specific for PCNA. Hybridoma, 2008, 27, 91-98.	0.5	14
50	Characterization of a Putative Phosphorylation Switch: Adaptation of SPOT Synthesis to Analyze PDZ Domain Regulation Mechanisms. ChemBioChem, 2007, 8, 2302-2307.	1.3	33
51	Sorting and pooling strategy: A novel tool to map a virus proteome for CD8 T-cell epitopes. Biopolymers, 2007, 88, 64-75.	1.2	19
52	Synthesis of cleavable peptides with authentic C-termini: an application for fully automated SPOT synthesis. Tetrahedron Letters, 2007, 48, 361-364.	0.7	13
53	Regulation of c-Src by binding to the PDZ domain of AF-6. EMBO Journal, 2007, 26, 2633-2644.	3.5	29
54	Discovery of Low-Molecular-Weight Ligands for the AF6 PDZ Domain. Angewandte Chemie - International Edition, 2006, 45, 3790-3795.	7.2	41

#	Article	IF	CITATIONS
55	An Improved Method for the Synthesis of Cellulose Membrane-Bound Peptides with Free C Termini Is Useful for PDZ Domain Binding Studies. Chemistry and Biology, 2004, 11, 449-459.	6.2	80
56	Quantification of PDZ Domain Specificity, Prediction of Ligand Affinity and Rational Design of Super-binding Peptides. Journal of Molecular Biology, 2004, 343, 703-718.	2.0	138