
## Peter Tessarz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5723757/publications.pdf Version: 2024-02-01



DETED TESSADZ

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Histone core modifications regulating nucleosome structure and dynamics. Nature Reviews<br>Molecular Cell Biology, 2014, 15, 703-708.                                                             | 16.1 | 775       |
| 2  | Thermotolerance Requires Refolding of Aggregated Proteins by Substrate Translocation through the Central Pore of ClpB. Cell, 2004, 119, 653-665.                                                  | 13.5 | 433       |
| 3  | Substrate recognition by the AAA+ chaperone ClpB. Nature Structural and Molecular Biology, 2004, 11, 607-615.                                                                                     | 3.6  | 219       |
| 4  | Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature, 2014, 505, 564-568.                                                                                   | 13.7 | 186       |
| 5  | Substrate threading through the central pore of the Hsp104 chaperone as a common mechanism for protein disaggregation and prion propagation. Molecular Microbiology, 2008, 68, 87-97.             | 1.2  | 171       |
| 6  | Longâ€lived macrophage reprogramming drives spike proteinâ€mediated inflammasome activation in<br>COVIDâ€19. EMBO Molecular Medicine, 2021, 13, e14150.                                           | 3.3  | 98        |
| 7  | Novel insights into the mechanism of chaperone-assisted protein disaggregation. Biological Chemistry, 2005, 386, 739-44.                                                                          | 1.2  | 92        |
| 8  | Common and specific mechanisms of AAA+ proteins involved in protein quality control. Biochemical<br>Society Transactions, 2008, 36, 120-125.                                                      | 1.6  | 70        |
| 9  | The Yeast AAA <sup>+</sup> Chaperone Hsp104 Is Part of a Network That Links the Actin Cytoskeleton with the Inheritance of Damaged Proteins. Molecular and Cellular Biology, 2009, 29, 3738-3745. | 1.1  | 66        |
| 10 | SIRT7-Dependent Deacetylation of Fibrillarin Controls Histone H2A Methylation and rRNA Synthesis<br>during the Cell Cycle. Cell Reports, 2018, 25, 2946-2954.e5.                                  | 2.9  | 60        |
| 11 | Inhibition of ubiquitin/proteasome-dependent proteolysis inSaccharomyces cerevisiaeby a Gly-Ala<br>repeat. FEBS Letters, 2003, 555, 397-404.                                                      | 1.3  | 39        |
| 12 | Chromatin remodeling due to degradation of citrate carrier impairs osteogenesis of aged mesenchymal stem cells. Nature Aging, 2021, 1, 810-825.                                                   | 5.3  | 37        |
| 13 | Histone Modifications in Ageing and Lifespan Regulation. Current Molecular Biology Reports, 2016, 2, 26-35.                                                                                       | 0.8  | 30        |
| 14 | Transcriptional repression by FACT is linked to regulation of chromatin accessibility at the promoter of ES cells. Life Science Alliance, 2018, 1, e201800085.                                    | 1.3  | 30        |
| 15 | Cooperative and independent activities of Sgt2 and Get5 in the targeting of tail-anchored proteins.<br>Biological Chemistry, 2011, 392, 601-8.                                                    | 1.2  | 28        |
| 16 | Ageing and sources of transcriptional heterogeneity. Biological Chemistry, 2019, 400, 867-878.                                                                                                    | 1.2  | 26        |
| 17 | Metabolism and chromatin: A dynamic duo that regulates development and ageing. BioEssays, 2021, 43, e2000273.                                                                                     | 1.2  | 11        |
| 18 | <i>N</i> 1-acetylspermidine is a determinant of hair follicle stem cell fate. Journal of Cell Science, 2021, 134, .                                                                               | 1.2  | 11        |

Peter Tessarz

| #  | Article                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The impact of genomic variation on protein phosphorylation states and regulatory networks.<br>Molecular Systems Biology, 2022, 18, e10712.                    | 3.2 | 9         |
| 20 | Histone N-terminal acetyltransferase NAA40 links one-carbon metabolism to chemoresistance.<br>Oncogene, 2022, 41, 571-585.                                    | 2.6 | 8         |
| 21 | NET-prism enables RNA polymerase-dedicated transcriptional interrogation at nucleotide resolution.<br>RNA Biology, 2019, 16, 1156-1165.                       | 1.5 | 5         |
| 22 | Nhp2 is a reader of H2AQ105me and part of aÂnetwork integrating metabolism with rRNA synthesis.<br>EMBO Reports, 2021, 22, e52435.                            | 2.0 | 5         |
| 23 | Epigenetic alterations in stem cell ageing—a promising target for age-reversing interventions?.<br>Briefings in Functional Genomics, 2021, , .                | 1.3 | 1         |
| 24 | The RNA-binding protein Puf5 contributes to buffering of mRNA upon chromatin-mediated changes in nascent transcription. Journal of Cell Science, 2021, 134, . | 1.2 | 0         |
| 25 | Cellular quality control of protein aggregates. FASEB Journal, 2009, 23, 195.2.                                                                               | 0.2 | Ο         |