
Bryan Charleston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5723278/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial, temporal and molecular dynamics of swine influenza virus-specific CD8 tissue resident memory T cells. Mucosal Immunology, 2022, 15, 428-442.	2.7	9
2	Porcine Respiratory Coronavirus as a Model for Acute Respiratory Coronavirus Disease. Frontiers in Immunology, 2022, 13, 867707.	2.2	11
3	Foot-and-mouth disease virus localisation on follicular dendritic cells and sustained induction of neutralising antibodies is dependent on binding to complement receptors (CR2/CR1). PLoS Pathogens, 2022, 18, e1009942.	2.1	3
4	Vaccines That Reduce Viral Shedding Do Not Prevent Transmission of H1N1 Pandemic 2009 Swine Influenza A Virus Infection to Unvaccinated Pigs. Journal of Virology, 2021, 95, .	1.5	8
5	A plasmid encoding the extracellular domain of CD40 ligand and Montanideâ,,¢ GEL01 as adjuvants enhance the immunogenicity and the protection induced by a DNA vaccine against BoHV-1. Vaccine, 2021, 39, 1007-1017.	1.7	8
6	The detection of longâ€lasting memory footâ€andâ€mouth disease (FMD) virus serotype Oâ€specific CD4 + T cells from FMDâ€vaccinated cattle by bovine major histocompatibility complex class II tetramer. Immunology, 2021, 164, 266-278.	2.0	5
7	Using cross-species vaccination approaches to counter emerging infectious diseases. Nature Reviews Immunology, 2021, 21, 815-822.	10.6	17
8	The selection of naturally stable candidate foot-and-mouth disease virus vaccine strains for East Africa. Vaccine, 2021, 39, 5015-5024.	1.7	7
9	Endemic persistence of a highly contagious pathogen: Foot-and-mouth disease in its wildlife host. Science, 2021, 374, 104-109.	6.0	23
10	Stability of Chimpanzee Adenovirus Vectored Vaccines (ChAdOx1 and ChAdOx2) in Liquid and Lyophilised Formulations. Vaccines, 2021, 9, 1249.	2.1	8
11	Pervasive within-host recombination and epistasis as major determinants of the molecular evolution of the foot-and-mouth disease virus capsid. PLoS Pathogens, 2020, 16, e1008235.	2.1	14
12	Bovine Dendritic Cell Activation, T Cell Proliferation and Antibody Responses to Foot-And-Mouth Disease, Is Similar With Inactivated Virus and Virus Like Particles. Frontiers in Veterinary Science, 2020, 7, 594.	0.9	3
13	Identification of a Newly Conserved SLA-II Epitope in a Structural Protein of Swine Influenza Virus. Frontiers in Immunology, 2020, 11, 2083.	2.2	2
14	Timelines of infection and transmission dynamics of H1N1pdm09 in swine. PLoS Pathogens, 2020, 16, e1008628.	2.1	13
15	Evaluation of the immunogenicity of prime-boost vaccination with the replication-deficient viral vectored COVID-19 vaccine candidate ChAdOx1 nCoV-19. Npj Vaccines, 2020, 5, 69.	2.9	121
16	Age of first infection across a range of parasite taxa in a wild mammalian population. Biology Letters, 2020, 16, 20190811.	1.0	16
17	Elucidating cryptic dynamics of <i>Theileria</i> communities in African buffalo using a highâ€throughput sequencing informatics approach. Ecology and Evolution, 2020, 10, 70-80.	0.8	19
18	Magnitude and Kinetics of T Cell and Antibody Responses During H1N1pdm09 Infection in Inbred Babraham Pigs and Outbred Pigs. Frontiers in Immunology, 2020, 11, 604913.	2.2	19

#	Article	IF	CITATIONS
19	Statistical modelling of data showing pandemic H1N1 2009 swine influenza A virus infection kinetics in vaccinated pigs. Data in Brief, 2019, 27, 104576.	0.5	0
20	Safety and efficacy of ChAdOx1 RVF vaccine against Rift Valley fever in pregnant sheep and goats. Npj Vaccines, 2019, 4, 44.	2.9	31
21	Persistent Infection of African Buffalo (Syncerus caffer) with Foot-and-Mouth Disease Virus: Limited Viral Evolution and No Evidence of Antibody Neutralization Escape. Journal of Virology, 2019, 93, .	1.5	15
22	Vaccine-mediated protection of pigs against infection with pandemic H1N1 2009 swine influenza A virus requires a close antigenic match between the vaccine antigen and challenge virus. Vaccine, 2019, 37, 2288-2293.	1.7	14
23	Comparison of Heterosubtypic Protection in Ferrets and Pigs Induced by a Single-Cycle Influenza Vaccine. Journal of Immunology, 2018, 200, 4068-4077.	0.4	50
24	Recent advances in veterinary applications of structural vaccinology. Current Opinion in Virology, 2018, 29, 33-38.	2.6	4
25	Chimeric O1K foot-and-mouth disease virus with SAT2 outer capsid as an FMD vaccine candidate. Scientific Reports, 2018, 8, 13654.	1.6	11
26	Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig. PLoS Pathogens, 2018, 14, e1007017.	2.1	35
27	Therapeutic Administration of Broadly Neutralizing FI6 Antibody Reveals Lack of Interaction Between Human IgG1 and Pig Fc Receptors. Frontiers in Immunology, 2018, 9, 865.	2.2	19
28	Tackling human and animal health threats through innovative vaccinology in Africa. AAS Open Research, 2018, 1, 18.	1.5	2
29	Tackling human and animal health threats through innovative vaccinology in Africa. AAS Open Research, 2018, 1, 18.	1.5	1
30	Frequency and phenotype of natural killer cells and natural killer cell subsets in bovine lymphoid compartments and blood. Immunology, 2017, 151, 89-97.	2.0	10
31	The B Cell Response to Foot-and-Mouth Disease Virus in Cattle following Sequential Vaccination with Multiple Serotypes. Journal of Virology, 2017, 91, .	1.5	5
32	A replication-competent foot-and-mouth disease virus expressing a luciferase reporter. Journal of Virological Methods, 2017, 247, 38-44.	1.0	6
33	Rules of engagement between αvβ6 integrin and foot-and-mouth disease virus. Nature Communications, 2017, 8, 15408.	5.8	75
34	Experimental acute infection of alpacas with Bovine viral diarrhea virus 1 subgenotype b alters peripheral blood and GALT leukocyte subsets. Journal of Veterinary Diagnostic Investigation, 2017, 29, 186-192.	0.5	7
35	SAT2 Foot-and-Mouth Disease Virus Structurally Modified for Increased Thermostability. Journal of Virology, 2017, 91, .	1.5	28
36	Isolation of Single-Domain Antibody Fragments That Preferentially Detect Intact (146S) Particles of Foot-and-Mouth Disease Virus for Use in Vaccine Quality Control. Frontiers in Immunology, 2017, 8, 960.	2.2	20

#	Article	IF	CITATIONS
37	Detection of Pathogen Exposure in African Buffalo Using Non-Specific Markers of Inflammation. Frontiers in Immunology, 2017, 8, 1944.	2.2	19
38	Potency of a thermostabilised chimpanzee adenovirus Rift Valley Fever vaccine in cattle. Vaccine, 2016, 34, 2296-2298.	1.7	28
39	Type I and III IFNs Produced by Plasmacytoid Dendritic Cells in Response to a Member of the FlaviviridaeSuppress Cellular Immune Responses. Journal of Immunology, 2016, 196, 4214-4226.	0.4	25
40	Chimpanzee Adenovirus Vaccine Provides Multispecies Protection against Rift Valley Fever. Scientific Reports, 2016, 6, 20617.	1.6	98
41	Distinct immune responses and virus shedding in pigs following aerosol, intra-nasal and contact infection with pandemic swine influenza A virus, A(H1N1)09. Veterinary Research, 2016, 47, 103.	1.1	30
42	Aerosol Delivery of a Candidate Universal Influenza Vaccine Reduces Viral Load in Pigs Challenged with Pandemic H1N1 Virus. Journal of Immunology, 2016, 196, 5014-5023.	0.4	72
43	Differential Persistence of Foot-and-Mouth Disease Virus in African Buffalo Is Related to Virus Virulence. Journal of Virology, 2016, 90, 5132-5140.	1.5	59
44	Application of the thermofluor PaSTRy technique for improving foot-and-mouth disease virus vaccine formulation. Journal of General Virology, 2016, 97, 1557-1565.	1.3	21
45	The B-cell response to foot-and-mouth-disease virus in cattle following vaccination and live-virus challenge. Journal of General Virology, 2016, 97, 2201-2209.	1.3	8
46	Transduction of skin-migrating dendritic cells by human adenovirus 5 occurs via an actin-dependent phagocytic pathway. Journal of General Virology, 2016, 97, 2703-2718.	1.3	2
47	The relative magnitude of transgene-specific adaptive immune responses induced by human and chimpanzee adenovirus vectors differs between laboratory animals and a target species. Vaccine, 2015, 33, 1121-1128.	1.7	20
48	Structure-based energetics of protein interfaces guides foot-and-mouth disease virus vaccine design. Nature Structural and Molecular Biology, 2015, 22, 788-794.	3.6	89
49	Assessment of the enhancement of PLGA nanoparticle uptake by dendritic cells through the addition of natural receptor ligands and monoclonal antibody. Vaccine, 2015, 33, 6588-6595.	1.7	17
50	Determining the Epitope Dominance on the Capsid of a Serotype SAT2 Foot-and-Mouth Disease Virus by Mutational Analyses. Journal of Virology, 2014, 88, 8307-8318.	1.5	14
51	Laboratory animal models to study foot-and-mouth disease: a review with emphasis on natural and vaccine-induced immunity. Journal of General Virology, 2014, 95, 2329-2345.	1.3	41
52	Bovine γδT Cells Are a Major Regulatory T Cell Subset. Journal of Immunology, 2014, 193, 208-222.	0.4	90
53	Type I and III Interferon Production in Response to RNA Viruses. Journal of Interferon and Cytokine Research, 2014, 34, 649-658.	0.5	23
54	Understanding foot-and-mouth disease virus transmission biology: identification of the indicators of infectiousness. Veterinary Research, 2013, 44, 46.	1.1	22

#	Article	IF	CITATIONS
55	Efficient production of foot-and-mouth disease virus empty capsids in insect cells following down regulation of 3C protease activity. Journal of Virological Methods, 2013, 187, 406-412.	1.0	51
56	Improved adjuvanting of seasonal influenza vaccines: Preclinical studies of <scp>MVAâ€NP+M</scp> 1 coadministration with inactivated influenza vaccine. European Journal of Immunology, 2013, 43, 1940-1952.	1.6	43
57	An infectious recombinant foot-and-mouth disease virus expressing a fluorescent marker protein. Journal of General Virology, 2013, 94, 1517-1527.	1.3	28
58	CD4+ T-cell responses to foot-and-mouth disease virus in vaccinated cattle. Journal of General Virology, 2013, 94, 97-107.	1.3	46
59	Rational Engineering of Recombinant Picornavirus Capsids to Produce Safe, Protective Vaccine Antigen. PLoS Pathogens, 2013, 9, e1003255.	2.1	126
60	Eradicating bovine viral diarrhoea virus. Veterinary Record, 2013, 172, 659-660.	0.2	0
61	Accumulation of nucleotide substitutions occurring during experimental transmission of foot-and-mouth disease virus. Journal of General Virology, 2013, 94, 108-119.	1.3	22
62	Characterization of epitope-tagged foot-and-mouth disease virus. Journal of General Virology, 2012, 93, 2371-2381.	1.3	30
63	Assessment of T-dependent and T-independent immune responses in cattle using a B cell ELISPOT assay. Veterinary Research, 2012, 43, 68.	1.1	16
64	Modelling the within-host dynamics of the foot-and-mouth disease virus in cattle. Epidemics, 2012, 4, 93-103.	1.5	14
65	Immune Responses in Pigs Vaccinated with Adjuvanted and Non-Adjuvanted A(H1N1)pdm/09 Influenza Vaccines Used in Human Immunization Programmes. PLoS ONE, 2012, 7, e32400.	1.1	21
66	Modelling the Influence of Foot-and-Mouth Disease Vaccine Antigen Stability and Dose on the Bovine Immune Response. PLoS ONE, 2012, 7, e30435.	1.1	8
67	Cattle remain immunocompetent during the acute phase of foot-and-mouth disease virus infection. Veterinary Research, 2011, 42, 108.	1.1	18
68	Relationship Between Clinical Signs and Transmission of an Infectious Disease and the Implications for Control. Science, 2011, 332, 726-729.	6.0	129
69	Hsp110-Mediated Enhancement of CD4 ⁺ T Cell Responses to the Envelope Glycoprotein of Members of the Family <i>Flaviviridae In Vitro</i> Does Not Occur <i>In Vivo</i> . Vaccine Journal, 2011, 18, 311-317.	3.2	5
70	Bovine Plasmacytoid Dendritic Cells Are the Major Source of Type I Interferon in Response to Foot-and-Mouth Disease Virus In Vitro and In Vivo. Journal of Virology, 2011, 85, 4297-4308.	1.5	41
71	Induction of a Cross-Reactive CD8 ⁺ T Cell Response following Foot-and-Mouth Disease Virus Vaccination. Journal of Virology, 2010, 84, 12375-12384.	1.5	43
72	The classical swine fever virus N-terminal protease Npro binds to cellular HAX-1. Journal of General Virology, 2010, 91, 2677-2686.	1.3	27

#	Article	IF	CITATIONS
73	The classical swine fever virus Npro product is degraded by cellular proteasomes in a manner that does not require interaction with interferon regulatory factor 3. Journal of General Virology, 2010, 91, 721-726.	1.3	20
74	Longevity of protection in cattle following immunisation with emergency FMD A22 serotype vaccine from the UK strategic reserve. Vaccine, 2010, 28, 2318-2322.	1.7	13
75	Hsp70 enhances presentation of FMDV antigen to bovine CD4+T cells in vitro. Veterinary Research, 2010, 41, 36.	1.1	3
76	Foot-and-Mouth Disease Virus Can Induce a Specific and Rapid CD4 ⁺ T-Cell-Independent Neutralizing and Isotype Class-Switched Antibody Response in Nail^ve Cattle. Journal of Virology, 2009, 83, 3626-3636.	1.5	76
77	Effect of the viral protein Nproon virulence of bovine viral diarrhea virus and induction of interferon type I in calves. American Journal of Veterinary Research, 2009, 70, 1117-1123.	0.3	7
78	Options for control of foot-and-mouth disease: knowledge, capability and policy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2657-2667.	1.8	172
79	A quantitative assessment of primary and secondary immune responses in cattle using a B cell ELISPOT assay. Veterinary Research, 2009, 40, 03.	1.1	15
80	Foot-and-Mouth Disease Virus Persists in the Light Zone of Germinal Centres. PLoS ONE, 2008, 3, e3434.	1.1	70
81	Identification of <i>Salmonella enterica</i> Serovar Dublin-Specific Sequences by Subtractive Hybridization and Analysis of Their Role in Intestinal Colonization and Systemic Translocation in Cattle. Infection and Immunity, 2008, 76, 5310-5321.	1.0	15
82	An MHC-restricted CD8+ T-cell response is induced in cattle by foot-and-mouth disease virus (FMDV) infection and also following vaccination with inactivated FMDV. Journal of General Virology, 2008, 89, 667-675.	1.3	71
83	The Npro product of classical swine fever virus interacts with lκBα, the NF-κB inhibitor. Journal of General Virology, 2008, 89, 1881-1889.	1.3	49
84	The Npro product of classical swine fever virus and bovine viral diarrhea virus uses a conserved mechanism to target interferon regulatory factor-3. Journal of General Virology, 2007, 88, 3002-3006.	1.3	85
85	Massive, sustained Î ³ δT cell migration from the bovine skin in vivo. Journal of Leukocyte Biology, 2007, 81, 968-973.	1.5	28
86	Bovine Viral Diarrhea Virus: Prevention of Persistent Fetal Infection by a Combination of Two Mutations Affecting E rns RNase and N pro Protease. Journal of Virology, 2007, 81, 3327-3338.	1.5	84
87	Fibrinogen is localized on dark zone follicular dendritic cells in vivo and enhances the proliferation and survival of a centroblastic cell line in vitro. Journal of Leukocyte Biology, 2007, 82, 666-677.	1.5	17
88	Systemic Translocation of <i>Salmonella enterica</i> Serovar Dublin in Cattle Occurs Predominantly via Efferent Lymphatics in a Cell-Free Niche and Requires Type III Secretion System 1 (T3SS-1) but Not T3SS-2. Infection and Immunity, 2007, 75, 5191-5199.	1.0	53
89	Global FMD control—Is it an option?. Vaccine, 2007, 25, 5660-5664.	1.7	88
90	Workshop cluster 1, a Î ³ δT cell specific receptor is phosphorylated and down regulated by activation induced Src family kinase activity. Molecular Immunology, 2007, 44, 1691-1703.	1.0	8

#	Article	IF	CITATIONS
91	Identification of a novel foot-and-mouth disease virus specific T-cell epitope with immunodominant characteristics in cattle with MHC serotype A31. Veterinary Research, 2007, 38, 565-572.	1.1	17
92	Isolation and purification of afferent lymph dendritic cells that drain the skin of cattle. Nature Protocols, 2006, 1, 982-987.	5.5	38
93	Characterization of the porcine neonatal Fc receptor-potential use for trans-epithelial protein delivery. Immunology, 2005, 114, 542-553.	2.0	70
94	Quantification of Different Human Alpha Interferon Subtypes and Pegylated Interferon Activities by Measuring MxA Promoter Activation. Antimicrobial Agents and Chemotherapy, 2005, 49, 3770-3775.	1.4	27
95	Differences in cytokine synthesis by the sub-populations of dendritic cells from afferent lymph. Immunology, 2003, 110, 48-57.	2.0	40
96	Comparison of the Efficacies of Three Fluoroquinolone Antimicrobial Agents, Given as Continuous or Pulsed-Water Medication, against <i>Escherichia coli</i> Infection in Chickens. Antimicrobial Agents and Chemotherapy, 1998, 42, 83-87.	1.4	44
97	Cloning and characterisation of two new cDNAs encoding murine triple LIM domains. Gene, 1995, 156, 283-286.	1.0	16
98	An interferon-induced mx protein: cDNA sequence and high-level expression in the endometrium of pregnant sheep. Gene, 1993, 137, 327-331.	1.0	55
99	Universal detection of foot and mouth disease virus based on the conserved VPO protein. Wellcome Open Research, 0, 3, 88.	0.9	2