Joseph A Mindell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5723227/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diagnosis and discovery: Insights from the <scp>NIH</scp> Undiagnosed Diseases Program. Journal of Inherited Metabolic Disease, 2022, 45, 907-918.	3.6	2
2	Structure and inhibition mechanism of the human citrate transporter NaCT. Nature, 2021, 591, 157-161.	27.8	45
3	Solvent accessibility changes in a Na+-dependent C4-dicarboxylate transporter suggest differential substrate effects in a multistep mechanism. Journal of Biological Chemistry, 2020, 295, 18524-18538.	3.4	8
4	Lysosomal Storage and Albinism Due to Effects of a De Novo CLCN7 Variant on Lysosomal Acidification. American Journal of Human Genetics, 2019, 104, 1127-1138.	6.2	59
5	Protons in small spaces: Discrete simulations of vesicle acidification. PLoS Computational Biology, 2019, 15, e1007539.	3.2	6
6	Characterizing chloride-dependent acidification in brain clathrin-coated vesicles. Biochemistry and Cell Biology, 2019, 97, 315-324.	2.0	0
7	The prokaryotic Na+/Ca2+ exchanger NCX_Mj transports Na+ and Ca2+ in a 3:1 stoichiometry. Journal of General Physiology, 2018, 150, 51-65.	1.9	27
8	Dissecting the Thermodynamics of Transport of a Sodium-Calcium Exchanger. Biophysical Journal, 2018, 114, 331a.	0.5	0
9	Characterization of Sodium-Calcium Exchanger NCX_Mj using Fluorescent Indicators. Biophysical Journal, 2017, 112, 274a.	O.5	0
10	It Runs in the Family: Determining the Transport Mechanism of Sodium/Dicarboxylate Symporter hNaDC3. Biophysical Journal, 2017, 112, 129a-130a.	0.5	0
11	Pinning Down the Mechanism of Transport: Probing the Structure and Function of Transporters Using Cysteine Cross-Linking and Site-Specific Labeling. Methods in Enzymology, 2017, 594, 165-202.	1.0	9
12	A general method for determining secondary active transporter substrate stoichiometry. ELife, 2017, 6,	6.0	35
13	A mathematical model of osteoclast acidification during bone resorption. Bone, 2016, 93, 167-180.	2.9	20
14	The bacterial dicarboxylate transporter VcINDY uses a two-domain elevator-type mechanism. Nature Structural and Molecular Biology, 2016, 23, 256-263.	8.2	76
15	Family resemblances: A common fold for some dimeric ion-coupled secondary transporters. Journal of General Physiology, 2015, 146, 423-434.	1.9	30
16	Functional characterization of a Na+-dependent dicarboxylate transporter from Vibrio cholerae. Journal of General Physiology, 2014, 143, 745-759.	1.9	44
17	A SWELL Channel Indeed. Science, 2014, 344, 585-586.	12.6	1
18	Thermodynamic evidence for a dual transport mechanism in a POT peptide transporter. ELife, 2014, 3, .	6.0	53

JOSEPH A MINDELL

#	Article	IF	CITATIONS
19	Three-Dimensional Spot Detection in Ratiometric Fluorescence Imaging For Measurement of Subcellular Organelles. , 2013, 2013, 722.		2
20	Mechanism of Transport Modulation by an Extracellular Loop in an Archaeal Excitatory Amino Acid Transporter (EAAT) Homolog. Journal of Biological Chemistry, 2013, 288, 35266-35276.	3.4	19
21	A model of lysosomal pH regulation. Journal of General Physiology, 2013, 141, 705-720.	1.9	134
22	Lysosomal Acidification Mechanisms. Annual Review of Physiology, 2012, 74, 69-86.	13.1	896
23	Bacterial Ion Channels. EcoSal Plus, 2010, 4, .	5.4	4
24	The Tao of Chloride Transporter Structure. Science, 2010, 330, 601-602.	12.6	3
25	The 3-4 loop of an archaeal glutamate transporter homolog experiences ligand-induced structural changes and is essential for transport. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12840-12845.	7.1	23
26	Detection of Substrate-Dependent Conformational Changes in HP1 of the Glutamate Transporter GltPH. Biophysical Journal, 2010, 98, 686a.	0.5	0
27	Functional Characterization of a Na+-dependent Aspartate Transporter from Pyrococcus horikoshii. Journal of Biological Chemistry, 2009, 284, 17540-17548.	3.4	102
28	Molecular coin slots for urea. Nature, 2009, 462, 733-734.	27.8	16
29	The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature, 2008, 453, 788-792.	27.8	336
30	The chloride channel's appendix. Nature Structural and Molecular Biology, 2008, 15, 781-783.	8.2	7
31	Insights into the CIC-4 Transport Mechanism from Studies of Zn2+ Inhibition. Biophysical Journal, 2008, 95, 4668-4675.	0.5	26
32	Electron Diffraction of a Bacterial ClC-Type Chloride Channel. Novartis Foundation Symposium, 2008, , 193-206.	1.1	2
33	The uncoupled chloride conductance of a bacterial glutamate transporter homolog. Nature Structural and Molecular Biology, 2007, 14, 365-371.	8.2	114
34	Site-Directed Fluorescence Studies of a Prokaryotic ClC Antiporter. Biochemistry, 2006, 45, 6773-6782.	2.5	40
35	Voltage-sensor activation with a tarantula toxin as cargo. Nature, 2005, 436, 857-860.	27.8	177
36	Accurate determination of local defocus and specimen tilt in electron microscopy. Journal of Structural Biology, 2003, 142, 334-347.	2.8	1,355

Joseph A Mindell

#	Article	IF	CITATIONS
37	The Poststructural Festivities Begin. Neuron, 2003, 38, 1-3.	8.1	15
38	Projection structure of a ClC-type chloride channel at 6.5 à resolution. Nature, 2001, 409, 219-223.	27.8	120
39	A Decade of CLC Chloride Channels: Structure, Mechanism, and Many Unsettled Questions. Annual Review of Biophysics and Biomolecular Structure, 2000, 29, 411-438.	18.3	167
40	Swimming through the hydrophobic sea: New insights in protein translocation. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4081-4083.	7.1	2
41	A PRACTICAL APPROACH TO ACUTE RENAL FAILURE. Medical Clinics of North America, 1997, 81, 731-748.	2.5	19
42	Structure-function relationships in diphtheria toxin channels: I. Determining a minimal channel-forming domain. Journal of Membrane Biology, 1994, 137, 17-28.	2.1	75
43	Structure function relationships in diphtheria toxin channels: II. A residue responsible for the channel's dependence on trans pH. Journal of Membrane Biology, 1994, 137, 29-44.	2.1	30
44	Structure-function relationships in diphtheria toxin channels: III. Residues which affect the cis pH dependence of channel conductance. Journal of Membrane Biology, 1994, 137, 45-57.	2.1	32
45	Reaction of diphtheria toxin channels with sulfhydryl-specific reagents: observation of chemical reactions at the single molecule level Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 5272-5276.	7.1	66
46	Tonic inhibition of the chloride/proton antiporter ClC-7 by PI(3,5)P2 is crucial for lysosomal pH maintenance. ELife, 0, 11, .	6.0	28