Senthil K Murugapiran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5723052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperature and Geographic Location Impact the Distribution and Diversity of Photoautotrophic Gene Variants in Alkaline Yellowstone Hot Springs. Microbiology Spectrum, 2022, 10, e0146521.	1.2	7
2	Recharge from glacial meltwater is critical for alpine springs and their microbiomes. Environmental Research Letters, 2021, 16, 064012.	2.2	8
3	Genomics, Exometabolomics, and Metabolic Probing Reveal Conserved Proteolytic Metabolism of Thermoflexus hugenholtzii and Three Candidate Species From China and Japan. Frontiers in Microbiology, 2021, 12, 632731.	1.5	8
4	Diverse respiratory capacity among Thermus strains from US Great Basin hot springs. Extremophiles, 2020, 24, 71-80.	0.9	13
5	Temperature impacts community structure and function of phototrophic Chloroflexi and Cyanobacteria in two alkaline hot springs in Yellowstone National Park. Environmental Microbiology Reports, 2020, 12, 503-513.	1.0	52
6	Position-Specific Metabolic Probing and Metagenomics of Microbial Communities Reveal Conserved Central Carbon Metabolic Network Activities at High Temperatures. Frontiers in Microbiology, 2019, 10, 1427.	1.5	12
7	Anoxygenic Phototrophs Span Geochemical Gradients and Diverse Morphologies in Terrestrial Geothermal Springs. MSystems, 2019, 4, .	1.7	24
8	Localized high abundance of Marine Group II archaea in the subtropical Pearl River Estuary: implications for their niche adaptation. Environmental Microbiology, 2018, 20, 734-754.	1.8	53
9	Thermus sediminis sp. nov., a thiosulfate-oxidizing and arsenate-reducing organism isolated from Little Hot Creek in the Long Valley Caldera, California. Extremophiles, 2018, 22, 983-991.	0.9	20
10	Effect of the Synthetic Bile Salt Analog CamSA on the Hamster Model of Clostridium difficile Infection. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	23
11	Genomic Comparison of Two Family-Level Groups of the Uncultivated NAG1 Archaeal Lineage from Chemically and Geographically Disparate Hot Springs. Frontiers in Microbiology, 2017, 8, 2082.	1.5	19
12	High-Quality Draft Genomes from <i>Thermus caliditerrae</i> YIM 77777 and <i>T.Âtengchongensis</i> YIM 77401, Isolates from Tengchong, China. Genome Announcements, 2016, 4, .	0.8	5
13	High-Quality Draft Genome Sequence of Thermocrinis jamiesonii GBS1 ^T Isolated from Great Boiling Spring, Nevada. Genome Announcements, 2016, 4, .	0.8	Ο
14	High-quality draft genome sequence of the Thermus amyloliquefaciens type strain YIM 77409T with an incomplete denitrification pathway. Standards in Genomic Sciences, 2016, 11, 20.	1.5	7
15	Single-Cell-Genomics-Facilitated Read Binning of Candidate Phylum EM19 Genomes from Geothermal Spring Metagenomes. Applied and Environmental Microbiology, 2016, 82, 992-1003.	1.4	36
16	Phylogeny and physiology of candidate phylum â€~Atribacteria' (OP9/JS1) inferred from cultivation-independent genomics. ISME Journal, 2016, 10, 273-286.	4.4	166
17	High-Quality Draft Genome Sequence of Kallotenue papyrolyticum JKG1 T Reveals Broad Heterotrophic Capacity Focused on Carbohydrate and Amino Acid Metabolism. Genome Announcements, 2015, 3, .	0.8	4
18	Uncultivated thermophiles: current status and spotlight on â€~Aigarchaeota'. Current Opinion in Microbiology, 2015, 25, 136-145.	2.3	70

#	Article	IF	CITATIONS
19	Exploring microbial dark matter to resolve the deep archaeal ancestry of eukaryotes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140328.	1.8	40
20	Thermoflexus hugenholtzii gen. nov., sp. nov., a thermophilic, microaerophilic, filamentous bacterium representing a novel class in the Chloroflexi, Thermoflexia classis nov., and description of Thermoflexaceae fam. nov. and Thermoflexales ord. nov International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 2119-2127.	0.8	90
21	Impact of single-cell genomics and metagenomics on the emerging view of extremophile "microbial dark matter― Extremophiles, 2014, 18, 865-875.	0.9	133
22	Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nature Communications, 2013, 4, 1854.	5.8	199
23	Whole Genome Sequencing of Thermus oshimai JL-2 and Thermus thermophilus JL-18, Incomplete Denitrifiers from the United States Great Basin. Genome Announcements, 2013, 1, .	0.8	19
24	Thermus oshimai JL-2 and T. thermophilus JL-18 genome analysis illuminates pathways for carbon, nitrogen, and sulfur cycling. Standards in Genomic Sciences, 2013, 7, 449-468.	1.5	31
25	Pyrosequencing Reveals High-Temperature Cellulolytic Microbial Consortia in Great Boiling Spring after In Situ Lignocellulose Enrichment, PLoS ONE, 2013, 8, e59927	1.1	42