Masato Ohtsuka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5723023/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cyclin D1 Binding Protein 1 Responds to DNA Damage through the ATM–CHK2 Pathway. Journal of Clinical Medicine, 2022, 11, 851.	1.0	2
2	Dll1 Can Function as a Ligand of Notch1 and Notch2 in the Thymic Epithelium. Frontiers in Immunology, 2022, 13, 852427.	2.2	3
3	Use of anti-inhibin monoclonal antibody for increasing the litter size of mouse strains and its application to <i>i</i> -GONAD. Biology of Reproduction, 2022, , .	1.2	7
4	AMBRA1 controls antigen-driven activation and proliferation of naive T cells. International Immunology, 2021, 33, 107-118.	1.8	3
5	Designing and generating a mouse model: frequently asked questions. Journal of Biomedical Research, 2021, 35, 76.	0.7	6
6	Response to correspondence on "Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation― Genome Biology, 2021, 22, 99.	3.8	4
7	Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer. Nature Communications, 2021, 12, 2281.	5.8	60
8	Novel reporter mouse models useful for evaluating inÂvivo gene editing and for optimization of methods of delivering genome editing tools. Molecular Therapy - Nucleic Acids, 2021, 24, 325-336.	2.3	10
9	GONAD: A new method for germline genome editing in mice and rats. Development Growth and Differentiation, 2021, 63, 439-447.	0.6	11
10	Alopecia areata susceptibility variant in MHC region impacts expressions of genes contributing to hair keratinization and is involved in hair loss. EBioMedicine, 2020, 57, 102810.	2.7	19
11	Genetically modified mouse models to help fight COVID-19. Nature Protocols, 2020, 15, 3777-3787.	5.5	26
12	Monitoring the autophagy-endolysosomal system using monomeric Keima-fused MAP1LC3B. PLoS ONE, 2020, 15, e0234180.	1.1	2
13	<i>Thy1</i> promoter activity in the <i>Rosa26</i> locus in mice: lessons from Dre- <i>rox</i> conditional expression system. Experimental Animals, 2020, 69, 287-294.	0.7	1
14	Effect of Diphtheria Toxin-Based Gene Therapy for Hepatocellular Carcinoma. Cancers, 2020, 12, 472.	1.7	13
15	Sequential i-GONAD: An Improved In Vivo Technique for CRISPR/Cas9-Based Genetic Manipulations in Mice. Cells, 2020, 9, 546.	1.8	13
16	Acrosin is essential for sperm penetration through the zona pellucida in hamsters. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2513-2518.	3.3	64
17	Modification of i-GONAD Suitable for Production of Genome-Edited C57BL/6 Inbred Mouse Strain. Cells, 2020, 9, 957.	1.8	10
18	Creation of CRISPR-based germline-genome-engineered mice without ex vivo handling of zygotes by i-GONAD. Nature Protocols, 2019, 14, 2452-2482.	5.5	93

#	Article	IF	CITATIONS
19	Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation. Genome Biology, 2019, 20, 171.	3.8	69
20	i ―GONAD : A method for generating genomeâ€edited animals without ex vivo handling of embryos. Development Growth and Differentiation, 2019, 61, 306-315.	0.6	19
21	SAM68-Specific Splicing Is Required for Proper Selection of Alternative 3′ UTR Isoforms in the Nervous System. IScience, 2019, 22, 318-335.	1.9	15
22	Isolation and Analysis of a Genome-Edited Single-Hepatocyte from a Cas9 Transgenic Mouse Line. Methods in Molecular Biology, 2019, 1874, 257-271.	0.4	0
23	Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nature Protocols, 2018, 13, 195-215.	5.5	209
24	Successful production of genome-edited rats by the rGONAD method. BMC Biotechnology, 2018, 18, 19.	1.7	40
25	i-GONAD: a robust method for in situ germline genome engineering using CRISPR nucleases. Genome Biology, 2018, 19, 25.	3.8	130
26	Cell–cell interactions between monocytes/macrophages and synoviocyte-like cells promote inflammatory cell infiltration mediated by augmentation of MCP-1 production in temporomandibular joint. Bioscience Reports, 2018, 38, .	1.1	15
27	Timing of CRISPR/Cas9-related mRNA microinjection after activation as an important factor affecting genome editing efficiency in porcine oocytes. Theriogenology, 2018, 108, 29-38.	0.9	31
28	Intraoviductal Instillation of a Solution as an Effective Route for Manipulating Preimplantation Mammalian Embryos in vivo. , 2018, , .		10
29	Intravenous Delivery of piggyBac Transposons as a Useful Tool for Liver-Specific Gene-Switching. International Journal of Molecular Sciences, 2018, 19, 3452.	1.8	10
30	In vivo genome editing targeted towards the female reproductive system. Archives of Pharmacal Research, 2018, 41, 898-910.	2.7	7
31	i-GONAD (improved genome-editing via oviductal nucleic acids delivery), a convenient in vivo tool to produce genome-edited rats. Scientific Reports, 2018, 8, 12059.	1.6	34
32	Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biology, 2017, 18, 92.	3.8	375
33	Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes. Methods, 2017, 121-122, 16-28.	1.9	121
34	Bone marrow-derived mesenchymal stem cells propagate immunosuppressive/anti-inflammatory macrophages in cell-to-cell contact-independent and -dependent manners under hypoxic culture. Experimental Cell Research, 2017, 358, 411-420.	1.2	61
35	Efficient Generation of Somatic Cell Nuclear Transfer-Competent Porcine Cells with Mutated Alleles at Multiple Target Loci by Using CRISPR/Cas9 Combined with Targeted Toxin-Based Selection System. International Journal of Molecular Sciences, 2017, 18, 2610.	1.8	7
36	The piggyBac-Based Gene Delivery System Can Confer Successful Production of Cloned Porcine Blastocysts with Multigene Constructs. International Journal of Molecular Sciences, 2016, 17, 1424.	1.8	5

#	Article	IF	CITATIONS
37	Establishment of Nephrin Reporter Mice and Use for Chemical Screening. PLoS ONE, 2016, 11, e0157497.	1.1	6
38	CRISPR: a versatile tool for both forward and reverse genetics research. Human Genetics, 2016, 135, 971-976.	1.8	41
39	GONAD: A Novel CRISPR/Cas9 Genome Editing Method that Does Not Require Ex Vivo Handling of Embryos. Current Protocols in Human Genetics, 2016, 88, 15.8.1-15.8.12.	3.5	27
40	Three-dimensional X-ray visualization of axonal tracts in mouse brain hemisphere. Scientific Reports, 2016, 6, 35061.	1.6	15
41	Effective Prevention of Liver Fibrosis by Liver-targeted Hydrodynamic Gene Delivery of Matrix Metalloproteinase-13 in a Rat Liver Fibrosis Model. Molecular Therapy - Nucleic Acids, 2016, 5, e276.	2.3	33
42	Effects of Fibrotic Tissue on Liver-targeted Hydrodynamic Gene Delivery. Molecular Therapy - Nucleic Acids, 2016, 5, e359.	2.3	10
43	Pronuclear Injectionâ€Based Targeted Transgenesis. Current Protocols in Human Genetics, 2016, 91, 15.10.1-15.10.28.	3.5	10
44	CRISPR/Cas9 and the Paradigm Shift in Mouse Genome Manipulation Technologies. , 2016, , 65-77.		3
45	Nucleic acids delivery methods for genome editing in zygotes and embryos: the old, the new, and the old-new. Biology Direct, 2016, 11, 16.	1.9	28
46	Conditional knockout of Foxc2 gene in kidney: efficient generation of conditional alleles of single-exon gene by double-selection system. Mammalian Genome, 2016, 27, 62-69.	1.0	8
47	CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA. Scientific Reports, 2015, 5, 12799.	1.6	119
48	Direct Injection of CRISPR/Cas9-Related mRNA into Cytoplasm of Parthenogenetically Activated Porcine Oocytes Causes Frequent Mosaicism for Indel Mutations. International Journal of Molecular Sciences, 2015, 16, 17838-17856.	1.8	55
49	Assessment of Artificial MiRNA Architectures for Higher Knockdown Efficiencies without the Undesired Effects in Mice. PLoS ONE, 2015, 10, e0135919.	1.1	6
50	Insertion of sequences at the original provirus integration site of mouse <i>ROSA26</i> locus using the CRISPR/Cas9 system. FEBS Open Bio, 2015, 5, 191-197.	1.0	30
51	Establishment of immortalized mesenchymal stem cells derived from the submandibular glands of tdTomato transgenic mice. Experimental and Therapeutic Medicine, 2015, 10, 1380-1386.	0.8	5
52	A combination of targeted toxin technology and the <i>piggyBac</i> â€mediated gene transfer system enables efficient isolation of stable transfectants in nonhuman mammalian cells. Biotechnology Journal, 2015, 10, 143-153.	1.8	6
53	GONAD: Genome-editing via Oviductal Nucleic Acids Delivery system: a novel microinjection independent genome engineering method in mice. Scientific Reports, 2015, 5, 11406.	1.6	98
54	One-step generation of multiple transgenic mouse lines using an improved Pronuclear Injection-based Targeted Transgenesis (i-PITT). BMC Genomics, 2015, 16, 274.	1.2	19

#	Article	lF	CITATIONS
55	PiggyBac transposon-mediated gene delivery efficiently generates stable transfectants derived from cultured primary human deciduous tooth dental pulp cells (HDDPCs) and HDDPC-derived iPS cells. International Journal of Oral Science, 2015, 7, 144-154.	3.6	17
56	Mouse Genome Editing Using the CRISPR/Cas System. Current Protocols in Human Genetics, 2014, 83, 15.7.1-27.	3.5	90
57	The combinational use of <scp>CRISPR</scp> /Cas9â€based gene editing and targeted toxin technology enables efficient biallelic knockout of the αâ€1,3â€galactosyltransferase gene in porcine embryonic fibroblasts. Xenotransplantation, 2014, 21, 291-300.	1.6	47
58	Development of Pronuclear Injection-Based Targeted Transgenesis in Mice Through Cre–loxP Site-Specific Recombination. Methods in Molecular Biology, 2014, 1194, 3-19.	0.4	9
59	Improvement of pronuclear injection-based targeted transgenesis (PITT) by iCre mRNA-mediated site-specific recombination. Transgenic Research, 2013, 22, 873-875.	1.3	9
60	piggyBac-mediated generation of stable transfectants with surface human leukocyte antigen expression from a small number of cells. Analytical Biochemistry, 2013, 437, 29-31.	1.1	8
61	X-ray microtomographic visualization of <i>EscherichiaÂcoli</i> by metalloprotein overexpression. Journal of Synchrotron Radiation, 2013, 20, 581-586.	1.0	5
62	Targeted Toxin-Based Selectable Drug-Free Enrichment of Mammalian Cells with High Transgene Expression. Biology, 2013, 2, 341-355.	1.3	11
63	In vivogene transfer in mouse preimplantation embryos after intraoviductal injection of plasmid DNA and subsequentin vivoelectroporation. Systems Biology in Reproductive Medicine, 2012, 58, 278-287.	1.0	11
64	PITT: Pronuclear Injection-Based Targeted Transgenesis, a Reliable Transgene Expression Method in Mice. Experimental Animals, 2012, 61, 489-502.	0.7	21
65	Fluorescent transgenic mice suitable for multi-color aggregation chimera studies. Cell and Tissue Research, 2012, 350, 251-260.	1.5	15
66	Targeted transgenesis through pronuclear injection of improved vectors into in vitro fertilized eggs. Transgenic Research, 2012, 21, 225-226.	1.3	11
67	Simple cloning strategy using GFPuv gene as positive/negative indicator. Analytical Biochemistry, 2011, 416, 237-239.	1.1	7
68	Double Anal Fin (Da): A Medaka Mutant Exhibiting a Mirror-Image Pattern Duplication of the Dorsal–Ventral Axis. , 2011, , 201-215.		2
69	Enrichment of xenograft-competent genetically modified pig cells using a targeted toxin, isolectin BS-I-B4 conjugate. Xenotransplantation, 2010, 17, 81-89.	1.6	12
70	Pronuclear injection-based mouse targeted transgenesis for reproducible and highly efficient transgene expression. Nucleic Acids Research, 2010, 38, e198-e198.	6.5	53
71	Recombinant DNA Technologies for Construction of Precisely Designed Transgene Constructs. Current Pharmaceutical Biotechnology, 2009, 10, 244-251.	0.9	20
72	Development of CRTEIL and CETRIZ, Cre- <i>loxP</i> -Based Systems, Which Allow Change of Expression of Red to Green or Green to Red Fluorescence upon Transfection with a Cre-Expression Vector. Journal of Biomedicine and Biotechnology, 2009, 2009, 1-9.	3.0	1

#	Article	IF	CITATIONS
73	A transposon-based chromosomal engineering method to survey a large cis-regulatory landscape in mice. Nature Genetics, 2009, 41, 946-952.	9.4	58
74	Creâ€ <i>loxP</i> system as a versatile tool for conferring increased levels of tissueâ€specific gene expression from a weak promoter. Molecular Reproduction and Development, 2008, 75, 1085-1093.	1.0	14
75	Major histocompatibility complex (Mhc) class Ib gene duplications, organization and expression patterns in mouse strain C57BL/6. BMC Genomics, 2008, 9, 178.	1.2	65
76	One-step generation of recombineering constructs by asymmetric-end ligation and negative selection. Analytical Biochemistry, 2007, 360, 306-308.	1.1	7
77	Construction of Mouse 129/Ola BAC Library for Targeting Experiments Using E14 Embryonic Stem Cells. Genes and Genetic Systems, 2006, 81, 143-146.	0.2	11
78	CHOP: visualization of 'wobbling' and isolation of highly conserved regions from aligned DNA sequences. Nucleic Acids Research, 2004, 32, W55-W58.	6.5	1
79	Possible roles of zic1 and zic4, identified within the medaka Double anal fin (Da) locus, in dorsoventral patterning of the trunk-tail region (related to phenotypes of the Da mutant). Mechanisms of Development, 2004, 121, 873-882.	1.7	29
80	Comparative analysis of a 229-kb medaka genomic region, containing the zic1 and zic4 genes, with Fugu , human, and mouse. Genomics, 2004, 83, 1063-1071.	1.3	6
81	Rapid Screening of a Novel Arrayed Medaka (Oryzias latipes) Cosmid Library. Marine Biotechnology, 2002, 4, 173-178.	1.1	6
82	Construction of a Linkage Map of the Medaka (Oryzias latipes) and Mapping of the Da Mutant Locus Defective in Dorsoventral Patterning. Genome Research, 1999, 9, 1277-1287.	2.4	31