
Giovanni Li Destri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/572238/publications.pdf Version: 2024-02-01

CIOVANNI LI DESTRI

#	Article	IF	CITATIONS
1	Fluorescent nanoparticles for reliable communication among implantable medical devices. Carbon, 2022, 190, 262-275.	5.4	7
2	Lamellar carbon-aluminosilicate nanocomposites with macroscopic orientation. Nanoscale, 2021, 13, 13650-13657.	2.8	0
3	Mechanical characterization and properties of continuous wave laser irradiated Ge2Sb2Te5 stripes. Materials and Design, 2021, 202, 109545.	3.3	1
4	Carbon Quantum Dots as Fluorescence Nanochemosensors for Selective Detection of Amino Acids. ACS Applied Nano Materials, 2021, 4, 6250-6256.	2.4	28
5	Carbon Quantum Dots from Lemon Waste Enable Communication among Biodevices. Chemosensors, 2021, 9, 202.	1.8	14
6	Graphene Quantum Dots enable digital communication through biological fluids. Carbon, 2021, 182, 847-855.	5.4	11
7	Tuning the randomization of lamellar orientation in poly(3-hexylthiophene) thin films with substrate nano-curvature. Polymer, 2021, 230, 124071.	1.8	4
8	Functionalized Carbon Nanoparticle-Based Sensors for Chemical Warfare Agents. ACS Applied Nano Materials, 2020, 3, 8182-8191.	2.4	40
9	Effect of Unmanned Aerial Vehicles on the Spatial Distribution of Analytes from Point Source. Chemosensors, 2020, 8, 77.	1.8	1
10	Supramolecular Sensing of a Chemical Warfare Agents Simulant by Functionalized Carbon Nanoparticles. Molecules, 2020, 25, 5731.	1.7	17
11	Nanoparticles as suitable messengers for molecular communication. Nanoscale, 2020, 12, 22386-22397.	2.8	8
12	Fluorescent nanoparticle-based Internet of things. Nanoscale, 2020, 12, 9817-9823.	2.8	14
13	Reactive nanomessengers for artificial chemical communication. Physical Chemistry Chemical Physics, 2019, 21, 16223-16229.	1.3	10
14	Self-assembled carbon nanoparticles as messengers for artificial chemical communication. Nanoscale, 2019, 11, 14203-14209.	2.8	15
15	Polymer Crystallization on Nanocurved Substrates: Distortion Versus Dewetting. Journal of Physical Chemistry C, 2019, 123, 8967-8974.	1.5	3
16	Chelating Surfaces for Oriented Human Serum Albumin Molecules. Langmuir, 2019, 35, 3354-3362.	1.6	3
17	<i>In situ</i> structure and force characterization of 2D nano-colloids at the air/water interface. Soft Matter, 2019, 15, 8475-8482.	1.2	10
18	Reactive messengers for digital molecular communication with variable transmitter–receiver distance. Physical Chemistry Chemical Physics, 2018, 20, 30312-30320.	1.3	17

GIOVANNI LI DESTRI

#	Article	IF	CITATIONS
19	Single fibres of pyro-electrospinned PVDF-HFP/MWCNT unveal high electrical conductivity. Polymer, 2018, 159, 157-161.	1.8	5
20	Driving Coordination Polymer Monolayer Formation by Competitive Reactions at the Air/Water Interface. Langmuir, 2018, 34, 11706-11713.	1.6	6
21	Energy-sustained reversible nanoscale order and conductivity increase in polymer thin films. Polymer, 2018, 153, 344-353.	1.8	1
22	Liquid–Liquid Interfacial Imaging Using Atomic Force Microscopy. Advanced Materials Interfaces, 2017, 4, 1700203.	1.9	17
23	Fluorescent Quantum Dots Make Feasible Long-Range Transmission of Molecular Bits. Journal of Physical Chemistry Letters, 2017, 8, 3861-3866.	2.1	24
24	Realâ€Time Investigation of Intercalation and Structure Evolution in Printed Polymer:Fullerene Bulk Heterojunction Thin Films. Advanced Energy Materials, 2016, 6, 1502025.	10.2	20
25	Tuning the Composition of Alloy Nanoparticles Through Laser Mixing: The Role of Surface Plasmon Resonance. Journal of Physical Chemistry C, 2016, 120, 12810-12818.	1.5	37
26	Filling nanoporous polymer thin films: an easy route toward the full control of the 3D nanostructure. RSC Advances, 2016, 6, 9175-9179.	1.7	8
27	Real Space Imaging of Nanoparticle Assembly at Liquid–Liquid Interfaces with Nanoscale Resolution. Nano Letters, 2016, 16, 5463-5468.	4.5	55
28	Controlling additive behavior to reveal an alternative morphology formation mechanism in polymer : fullerene bulk-heterojunctions. Journal of Materials Chemistry A, 2016, 4, 16136-16147.	5.2	22
29	Real-time evaluation of thin film drying kinetics using an advanced, multi-probe optical setup. Journal of Materials Chemistry C, 2016, 4, 2178-2186.	2.7	29
30	Controlling length-scales of the phase separation to optimize organic semiconductor blends. Applied Physics Letters, 2015, 107, .	1.5	11
31	The Link Between Self-Assembly and Molecular Conformation of Amphiphilic Block Copolymers Monolayers at the Air/Water Interface: The Spreading Parameter. Langmuir, 2015, 31, 8856-8864.	1.6	37
32	Structure of a liquid/liquid interface during solvent extraction combining X-ray and neutron reflectivity measurements. Physical Chemistry Chemical Physics, 2015, 17, 15093-15097.	1.3	45
33	Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential. Materials Science and Engineering C, 2015, 48, 337-346.	3.8	54
34	Enzyme-assisted calcium phosphate biomineralization on an inert alumina surface. Acta Biomaterialia, 2015, 13, 335-343.	4.1	20
35	Characterization of Wet Powder-Sprayed Zirconia/Calcium Phosphate Coating for Dental Implants. Clinical Implant Dentistry and Related Research, 2015, 17, 186-198.	1.6	28
36	Nanoscale Structure of Si/SiO ₂ /Organics Interfaces. ACS Nano, 2014, 8, 12676-12681.	7.3	36

GIOVANNI LI DESTRI

#	Article	lF	CITATIONS
37	Structure–Rheology Relationship in Weakly Amphiphilic Block Copolymer Langmuir Monolayers. Langmuir, 2014, 30, 3345-3353.	1.6	18
38	Tensile properties, thermal and morphological analysis of thermoplastic polyurethane films reinforced with multiwalled carbon nanotubes. European Polymer Journal, 2013, 49, 3155-3164.	2.6	38
39	Enhanced crystallinity and film retention of P3HT thin-films for efficient organic solar cells by use of preformed nanofibers in solution. Journal of Materials Chemistry C, 2013, 1, 7748.	2.7	34
40	Crystal Morphologies and Polymorphs in Tolbutamide Microcrystalline Powder. Journal of Pharmaceutical Sciences, 2013, 102, 73-83.	1.6	27
41	Polymer/metal hybrid multilayers modified Schottky devices. Applied Physics Letters, 2013, 103, 193117.	1.5	8
42	Electroactive functional hybrid layered nanocomposites. , 2012, , .		2
43	Extended-Chain Induced Bulk Morphologies Occur at Surfaces of Thin Co-Oligomer Films. Macromolecules, 2012, 45, 4740-4748.	2.2	15
44	Interfacial Free Energy Driven Nanophase Separation in Poly(3-hexylthiophene)/[6,6]-Phenyl-C61-butyric Acid Methyl Ester Thin Films. Langmuir, 2012, 28, 5257-5266.	1.6	22
45	Supramolecular Polymer Networks Based on Calix[5]arene Tethered Poly(<i>p</i> -phenyleneethynylene). Macromolecules, 2012, 45, 7549-7556.	2.2	29
46	Polymeric membranes conditioning for sensors applications: mechanism and influence on analytes detection. Journal of Solid State Electrochemistry, 2012, 16, 901-909.	1.2	10
47	Part I: A comparative study of bismuth-modified screen-printed electrodes for lead detection. Analytica Chimica Acta, 2011, 707, 171-177.	2.6	46
48	How molecular interactions affect crystal morphology: The case of haloperidol. Journal of Pharmaceutical Sciences, 2011, 100, 4896-4906.	1.6	29
49	Crystalline Monolayer Ordering at Substrate/Polymer Interfaces in Poly(3â€hexylthiophene) Ultrathin Films. Macromolecular Chemistry and Physics, 2011, 212, 905-914.	1.1	25
50	Could N-(diethylcarbamothioyl)benzamide be a good ionophore for sensor membranes?. Journal of Molecular Structure, 2010, 981, 86-92.	1.8	21