
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5722180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
2	Positive biodiversity-productivity relationship predominant in global forests. Science, 2016, 354, .	6.0	864
3	Long-term decline of the Amazon carbon sink. Nature, 2015, 519, 344-348.	13.7	796
4	Plant functional traits have globally consistent effects on competition. Nature, 2016, 529, 204-207.	13.7	655
5	Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	3.4	397
6	Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 2019, 569, 404-408.	13.7	371
7	Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 2010, 13, 1338-1347.	3.0	312
8	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	4.2	265
9	<scp>biomass</scp> : an <scp>r</scp> package for estimating aboveâ€ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 2017, 8, 1163-1167.	2.2	256
10	Hyperdominance in Amazonian forest carbon cycling. Nature Communications, 2015, 6, 6857.	5.8	214
11	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	6.0	198
12	Functional traits shape ontogenetic growth trajectories of rain forest tree species. Journal of Ecology, 2011, 99, 1431-1440.	1.9	180
13	entropart : An <i>R</i> Package to Measure and Partition Diversity. Journal of Statistical Software, 2015, 67, .	1.8	174
14	Multidimensional tropical forest recovery. Science, 2021, 374, 1370-1376.	6.0	165
15	Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests. Global Change Biology, 2011, 17, 2677-2688.	4.2	160
16	Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana. Annals of Forest Science, 2010, 67, 607-607.	0.8	153
17	Functional trait variation and sampling strategies in speciesâ€rich plant communities. Functional Ecology, 2010, 24, 208-216.	1.7	147
18	Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytologist, 2021. 231. 763-776.	3.5	126

#	Article	IF	CITATIONS
19	Functional traits of individual trees reveal ecological constraints on community assembly in tropical rain forests. Oikos, 2011, 120, 720-727.	1.2	124
20	For the sake of resilience and multifunctionality, let's diversify planted forests!. Conservation Letters, 2022, 15, e12829.	2.8	124
21	The response of tropical rainforests to drought—lessons from recent research and future prospects. Annals of Forest Science, 2016, 73, 27-44.	0.8	123
22	Depth of soil water uptake by tropical rainforest trees during dry periods: does tree dimension matter?. Oecologia, 2013, 173, 1191-1201.	0.9	116
23	Dynamics of aboveground carbon stocks in a selectively logged tropical forest. Ecological Applications, 2009, 19, 1397-1404.	1.8	108
24	Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests. Biogeosciences, 2016, 13, 2537-2562.	1.3	108
25	Contrasting taxonomic and functional responses of a tropical tree community to selective logging. Journal of Applied Ecology, 2012, 49, 861-870.	1.9	102
26	Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions. Carbon Balance and Management, 2017, 12, 1.	1.4	98
27	Coordination and tradeâ€offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytologist, 2018, 218, 1015-1024.	3.5	97
28	Ground Data are Essential for Biomass Remote Sensing Missions. Surveys in Geophysics, 2019, 40, 863-880.	2.1	91
29	Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences, 2014, 11, 6827-6840.	1.3	89
30	Rapid tree carbon stock recovery in managed Amazonian forests. Current Biology, 2015, 25, R787-R788.	1.8	88
31	The number of tree species on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	86
32	Water Availability Is the Main Climate Driver of Neotropical Tree Growth. PLoS ONE, 2012, 7, e34074.	1.1	78
33	Panâ€ŧropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 2018, 27, 1366-1383.	2.7	78
34	Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data. Global Change Biology, 2019, 25, 3609-3624.	4.2	78
35	Phytophagy on phylogenetically isolated trees: why hosts should escape their relatives. Ecology Letters, 2011, 14, 1117-1124.	3.0	76
36	Nutrient-cycling mechanisms other than the direct absorption from soil may control forest structure and dynamics in poor Amazonian soils. Scientific Reports, 2017, 7, 45017.	1.6	76

#	Article	IF	CITATIONS
37	The relative importance of local, regional and historical factors determining the distribution of plants in fragmented riverine forests: an emergent group approach. Journal of Biogeography, 2005, 32, 2069-2081.	1.4	74
38	Interannual and Seasonal Variations in Ecosystem Transpiration and Water Use Efficiency in a Tropical Rainforest. Forests, 2019, 10, 14.	0.9	74
39	Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests. Scientific Reports, 2020, 10, 2302.	1.6	74
40	Rapid Simultaneous Estimation of Aboveground Biomass and Tree Diversity Across Neotropical Forests: A Comparison of Field Inventory Methods. Biotropica, 2013, 45, 288-298.	0.8	73
41	Growth responses of neotropical trees to logging gaps. Journal of Applied Ecology, 2010, 47, 821-831.	1.9	72
42	Taking the pulse of Earth's tropical forests using networks of highly distributed plots. Biological Conservation, 2021, 260, 108849.	1.9	71
43	Emerging threats linking tropical deforestation and the COVID-19 pandemic. Perspectives in Ecology and Conservation, 2020, 18, 243-246.	1.0	65
44	Climate drivers of the Amazon forest greening. PLoS ONE, 2017, 12, e0180932.	1.1	63
45	The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514.	2.7	62
46	Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nature Ecology and Evolution, 2021, 5, 1123-1134.	3.4	62
47	Modeling water availability for trees in tropical forests. Agricultural and Forest Meteorology, 2011, 151, 1202-1213.	1.9	59
48	Generalization of the Partitioning of Shannon Diversity. PLoS ONE, 2014, 9, e90289.	1.1	59
49	Modeling decay rates of dead wood in a neotropical forest. Oecologia, 2010, 164, 243-251.	0.9	57
50	Effects of Plot Size and Census Interval on Descriptors of Forest Structure and Dynamics. Biotropica, 2010, 42, 664-671.	0.8	57
51	Key drivers of ecosystem recovery after disturbance in a neotropical forest. Forest Ecosystems, 2018, 5, .	1.3	57
52	Reconciling niche and neutrality through the Emergent Group approach. Perspectives in Plant Ecology, Evolution and Systematics, 2007, 9, 71-78.	1.1	54
53	Evaluation of the ecological restoration potential of plant communities in Norway spruce plantations using a life-trait based approach. Journal of Applied Ecology, 2005, 42, 536-545.	1.9	53
54	Contrasting above-ground biomass balance in a Neotropical rain forest. Journal of Vegetation Science, 2010, 21, 672.	1.1	50

#	Article	IF	CITATIONS
55	Pan-Tropical Analysis of Climate Effects on Seasonal Tree Growth. PLoS ONE, 2014, 9, e92337.	1.1	50
56	Gold-rush in a forested El Dorado: deforestation leakages and the need for regional cooperation. Environmental Research Letters, 2017, 12, 034013.	2.2	50
57	Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data. International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 502-514.	1.4	49
58	<i>In Situ</i> Reference Datasets From the TropiSAR and AfriSAR Campaigns in Support of Upcoming Spaceborne Biomass Missions. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 3617-3627.	2.3	49
59	sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global Ecology and Biogeography, 2021, 30, 1740-1764.	2.7	49
60	The decomposition of Shannon's entropy and a confidence interval for beta diversity. Oikos, 2012, 121, 516-522.	1.2	47
61	The Tropical managed Forests Observatory: a research network addressing the future of tropical logged forests. Applied Vegetation Science, 2015, 18, 171-174.	0.9	47
62	Can timber provision from Amazonian production forests be sustainable?. Environmental Research Letters, 2019, 14, 064014.	2.2	47
63	Recent deforestation drove the spike in Amazonian fires. Environmental Research Letters, 2020, 15, 121003.	2.2	46
64	What drives long-term variations in carbon flux and balance in a tropical rainforest in French Guiana?. Agricultural and Forest Meteorology, 2018, 253-254, 114-123.	1.9	45
65	Carbon recovery dynamics following disturbance by selective logging in Amazonian forests. ELife, 2016, 5, .	2.8	45
66	The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Scientific Data, 2019, 6, 198.	2.4	44
67	Evolutionary heritage influences Amazon tree ecology. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161587.	1.2	43
68	Mapping global forest age from forest inventories, biomass and climate data. Earth System Science Data, 2021, 13, 4881-4896.	3.7	42
69	Predicting tree heights for biomass estimates in tropical forests – a test from French Guiana. Biogeosciences, 2014, 11, 3121-3130.	1.3	41
70	Drivers of biomass recovery in a secondary forested landscape of West Africa. Forest Ecology and Management, 2019, 433, 325-331.	1.4	39
71	Regional Scale Rain-Forest Height Mapping Using Regression-Kriging of Spaceborne and Airborne LiDAR Data: Application on French Guiana. Remote Sensing, 2016, 8, 240.	1.8	38
72	Climate Change Impact on Neotropical Social Wasps. PLoS ONE, 2011, 6, e27004.	1.1	37

#	Article	IF	CITATIONS
73	Functional diversity improves tropical forest resilience: Insights from a longâ€ŧerm virtual experiment. Journal of Ecology, 2020, 108, 831-843.	1.9	36
74	Leaf functional response to increasing atmospheric CO ₂ concentrations over the last century in two northern Amazonian tree species: a historical <i>δ</i> ¹³ C and <i>δ</i> ¹⁸ O approach using herbarium samples. Plant, Cell and Environment, 2011, 34, 1332-1344.	2.8	35
75	Tree Height Reduction After Selective Logging in a Tropical Forest. Biotropica, 2016, 48, 285-289.	0.8	35
76	Vertical stratification reduces competition for light in dense tropical forests. Forest Ecology and Management, 2014, 329, 79-88.	1.4	34
77	Asynchronism in leaf and wood production in tropical forests: a study combining satellite and ground-based measurements. Biogeosciences, 2013, 10, 7307-7321.	1.3	33
78	Disentangling competitive vs. climatic drivers of tropical forest mortality. Journal of Ecology, 2018, 106, 1165-1179.	1.9	33
79	Assessing the potential of natural woody species regeneration for the conversion of Norway spruce plantations on alluvial soils. Annals of Forest Science, 2004, 61, 711-719.	0.8	31
80	Soil seed bank and vegetation dynamics in Sahelian fallows; the impact of past cropping and current grazing treatments. Journal of Tropical Ecology, 2004, 20, 683-691.	0.5	28
81	Topography consistently drives intra―and interâ€specific leaf trait variation within tree species complexes in a Neotropical forest. Oikos, 2020, 129, 1521-1530.	1.2	28
82	Environmental control of natural gap size distribution in tropical forests. Biogeosciences, 2017, 14, 353-364.	1.3	27
83	Using lifeâ€history traits to achieve a functional classification of habitats. Applied Vegetation Science, 2007, 10, 73-80.	0.9	26
84	Longâ€ŧerm influence of early human occupations on current forests of the Guiana Shield. Ecology, 2019, 100, e02806.	1.5	26
85	Estimating tropical tree diversity indices from forestry surveys: A method to integrate taxonomic uncertainty. Forest Ecology and Management, 2014, 328, 270-281.	1.4	25
86	Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome. PLoS ONE, 2015, 10, e0138456.	1.1	25
87	Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests. Journal of Animal Ecology, 2016, 85, 227-239.	1.3	25
88	Toward Trait-Based Mortality Models for Tropical Forests. PLoS ONE, 2013, 8, e63678.	1.1	24
89	Identifying climatic drivers of tropical forest dynamics. Biogeosciences, 2015, 12, 5583-5596.	1.3	24
90	Stay Out (Almost) All Night: Contrasting Responses in Flight Activity Among Tropical Moth Assemblages. Neotropical Entomology, 2015, 44, 109-115.	0.5	24

6

#	Article	IF	CITATIONS
91	Assessing timber volume recovery after disturbance in tropical forests – A new modelling framework. Ecological Modelling, 2018, 384, 353-369.	1.2	24
92	Monitoring canopy bird activity in disturbed landscapes with automatic recorders: A case study in the tropics. Biological Conservation, 2020, 245, 108574.	1.9	24
93	Beyond species richness and biomass: Impact of selective logging and silvicultural treatments on the functional composition of a neotropical forest. Forest Ecology and Management, 2019, 433, 528-534.	1.4	23
94	A joint individualâ€based model coupling growth and mortality reveals that tree vigor is a key component of tropical forest dynamics. Ecology and Evolution, 2015, 5, 2457-2465.	0.8	22
95	Functional traits partially mediate the effects of chronic anthropogenic disturbance on the growth of a tropical tree. AoB PLANTS, 2018, 10, ply036.	1.2	21
96	Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests. Environmental Research Letters, 2022, 17, 014047.	2.2	21
97	Tropical rainforests that persisted: inferences from the Quaternary demographic history of eight tree species in the Guiana shield. Molecular Ecology, 2017, 26, 1161-1174.	2.0	20
98	Disturbance Regimes Drive The Diversity of Regional Floristic Pools Across Guianan Rainforest Landscapes. Scientific Reports, 2018, 8, 3872.	1.6	20
99	Temperature rising would slow down tropical forest dynamic in the Guiana Shield. Scientific Reports, 2019, 9, 10235.	1.6	20
100	Redundancy and niche differentiation among the European invasive Elodea species. Biological Invasions, 2008, 10, 1099-1107.	1.2	19
101	A Tank Bromeliad Favors Spider Presence in a Neotropical Inundated Forest. PLoS ONE, 2014, 9, e114592.	1.1	19
102	Insect herbivores should follow plants escaping their relatives. Oecologia, 2014, 176, 521-532.	0.9	19
103	High foliar K and P resorption efficiencies in oldâ€growth tropical forests growing on nutrientâ€poor soils. Ecology and Evolution, 2021, 11, 8969-8982.	0.8	18
104	The long-term performance of 35 tree species of sudanian West Africa in pure and mixed plantings. Forest Ecology and Management, 2020, 468, 118171.	1.4	18
105	How habitat area, local and regional factors shape plant assemblages in isolated closed depressions. Acta Oecologica, 2009, 35, 385-392.	0.5	17
106	Simulation of succession in a neotropical forest: High selective logging intensities prolong the recovery times of ecosystem functions. Forest Ecology and Management, 2018, 430, 517-525.	1.4	17
107	A simulation method to infer tree allometry and forest structure from airborne laser scanning and forest inventories. Remote Sensing of Environment, 2020, 251, 112056.	4.6	17
108	Relevance of secondary tropical forest for landscape restoration. Forest Ecology and Management, 2021, 493, 119265.	1.4	17

#	Article	IF	CITATIONS
109	Water table depth modulates productivity and biomass across Amazonian forests. Global Ecology and Biogeography, 2022, 31, 1571-1588.	2.7	17
110	Are Commonly Measured Functional Traits Involved in Tropical Tree Responses to Climate?. International Journal of Ecology, 2014, 2014, 1-10.	0.3	16
111	Slow rate of secondary forest carbon accumulation in the Guianas compared with the rest of the Neotropics. Ecological Applications, 2020, 30, e02004.	1.8	16
112	Topography drives microgeographic adaptations of closely related species in two tropical tree species complexes. Molecular Ecology, 2021, 30, 5080-5093.	2.0	16
113	Functional Traits Help Predict Post-Disturbance Demography of Tropical Trees. PLoS ONE, 2014, 9, e105022.	1.1	16
114	Efficacy of Bagassa guianensis Aubl. extract against wood decay and human pathogenic fungi. International Biodeterioration and Biodegradation, 2012, 70, 55-59.	1.9	14
115	Bats Fertilize Roost Trees. Biotropica, 2015, 47, 403-406.	0.8	14
116	Vulnerability of Commercial Tree Species to Water Stress in Logged Forests of the Guiana Shield. Forests, 2016, 7, 105.	0.9	14
117	A methodological framework to assess the carbon balance of tropical managed forests. Carbon Balance and Management, 2016, 11, 15.	1.4	13
118	Climate change would lead to a sharp acceleration of Central African forests dynamics by the end of the century. Environmental Research Letters, 2019, 14, 044002.	2.2	12
119	Diverging taxonomic and functional trajectories following disturbance in a Neotropical forest. Science of the Total Environment, 2020, 720, 137397.	3.9	12
120	Causes and consequences of Cedrela odorata invasion in West African semi-deciduous tropical forests. Biological Invasions, 2021, 23, 537-552.	1.2	12
121	Diversity of plant assemblages in isolated depressional wetlands from Central-Western Europe. Biodiversity and Conservation, 2008, 17, 2169-2183.	1.2	11
122	Decomposing phylodiversity. Methods in Ecology and Evolution, 2015, 6, 333-339.	2.2	11
123	Biological traits, rather than environment, shape detection curves of large vertebrates in neotropical rainforests. Ecological Applications, 2017, 27, 1564-1577.	1.8	11
124	Assimilating satelliteâ€based canopy height within an ecosystem model to estimate aboveground forest biomass. Geophysical Research Letters, 2017, 44, 6823-6832.	1.5	11
125	Understanding the recruitment response of juvenile Neotropical trees to logging intensity using functional traits. Ecological Applications, 2018, 28, 1998-2010.	1.8	11
126	A temporary social parasite of tropical plant-ants improves the fitness of a myrmecophyte. Die Naturwissenschaften, 2010, 97, 925-934.	0.6	10

#	Article	IF	CITATIONS
127	Mycorrhizae support oaks growing in a phylogenetically distant neighbourhood. Soil Biology and Biochemistry, 2014, 78, 204-212.	4.2	9
128	Moving forward socioâ€economically focused models of deforestation. Global Change Biology, 2017, 23, 3484-3500.	4.2	9
129	Optimal strategies for ecosystem services provision in Amazonian production forests. Environmental Research Letters, 2019, 14, 124090.	2.2	9
130	Topography shapes the local coexistence of tree species within species complexes of Neotropical forests. Oecologia, 2021, 196, 389-398.	0.9	9
131	The potential of secondary forests to restore biodiversity of the lost forests in semi-deciduous West Africa. Biological Conservation, 2021, 259, 109154.	1.9	9
132	Questioning emissions-based approaches for the definition of REDD+ deforestation baselines in high forest cover/low deforestation countries. Carbon Balance and Management, 2018, 13, 21.	1.4	8
133	Climate change alters the ability of neotropical forests to provide timber and sequester carbon. Forest Ecology and Management, 2021, 492, 119166.	1.4	8
134	Taking advantage of natural regeneration potential in secondary forests to recover commercial tree resources in CA te d'Ivoire. Forest Ecology and Management, 2021, 493, 119240.	1.4	8
135	Tropical wood stores substantial amounts of nutrients, but we have limited understanding why. Biotropica, 2022, 54, 596-606.	0.8	8
136	Phosphorus and nitrogen allocation in Allium ursinum on an alluvial floodplain (Eastern France). Is there an effect of flooding history?. Plant and Soil, 2009, 324, 279-289.	1.8	7
137	Black Curassow habitat relationships in <i>terra firme</i> forests of the Guiana Shield: A multiscale approach. Condor, 2016, 118, 253-273.	0.7	7
138	A whole-plant functional scheme predicting the early growth of tropical tree species: evidence from 15 tree species in Central Africa. Trees - Structure and Function, 2019, 33, 491-505.	0.9	7
139	Disturbed habitats locally reduce the signal of deep evolutionary history in functional traits of plants. New Phytologist, 2021, 232, 1849-1862.	3.5	7
140	Rapid tree carbon stock recovery in managed Amazonian forests. Current Biology, 2015, 25, 2738.	1.8	6
141	Ant-lepidopteran associations along African forest edges. Die Naturwissenschaften, 2017, 104, 7.	0.6	6
142	Accurate Estimation of Commercial Volume in Tropical Forests. Forest Science, 2021, 67, 14-21.	0.5	6
143	Seasonal variation of leaf thickness: An overlooked component of functional trait variability. Plant Biology, 2022, 24, 458-463.	1.8	6
144	Selection in space and time: Individual tree growth is adapted to tropical forest gap dynamics. Molecular Ecology, 2022, , .	2.0	6

#	Article	IF	CITATIONS
145	How wildfires increase sensitivity of Amazon forests to droughts. Environmental Research Letters, 2022, 17, 044031.	2.2	6
146	A bromeliad species reveals invasive ant presence in urban areas of French Guiana. Ecological Indicators, 2015, 58, 1-7.	2.6	5
147	A cuckoo-like parasitic moth leads African weaver ant colonies to their ruin. Scientific Reports, 2016, 6, 23778.	1.6	5
148	Will Tropical Rainforests Survive Climate Change?. , 2016, , 183-196.		5
149	Local farmers shape ecosystem service provisioning in West African cocoa agroforests. Agroforestry Systems, 2023, 97, 401-414.	0.9	5
150	Prospective carbon balance of the wood sector in a tropical forest territory using a temporally-explicit model. Forest Ecology and Management, 2021, 497, 119532.	1.4	4
151	GUYASIM : UN OUTIL D'AIDE À LA DÉCISION POUR L'AMÉNAGEMENT D'UN TERRITOIRE FORES Bois Et Forets Des Tropiques, 2015, 326, 67.	TIER, LA (0.2	SUYANE.
152	30 Years of postdisturbance recruitment in a Neotropical forest. Ecology and Evolution, 2021, 11, 14448-14458.	0.8	4
153	Wood Nutrient-Water-Density Linkages Are Influenced by Both Species and Environment. Frontiers in Plant Science, 2022, 13, 778403.	1.7	4
154	Bat aggregation mediates the functional structure of ant assemblages. Comptes Rendus - Biologies, 2015, 338, 688-695.	0.1	3
155	Weak environmental controls on the composition and diversity of medium and largeâ€sized vertebrate assemblages in neotropical rain forests of the Guiana Shield. Diversity and Distributions, 2018, 24, 1545-1559.	1.9	3
156	Weak Environmental Controls of Tropical Forest Canopy Height in the Guiana Shield. Remote Sensing, 2016, 8, 747.	1.8	2
157	Birds of a feather flock together: Functionally similar vertebrates positively coâ€occur in Guianan forests. Ecosphere, 2019, 10, e02566.	1.0	2
158	Using life-history traits to achieve a functional classification of habitats. , 2007, 10, 73.		2
159	Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR data: Application on French Guiana. , 2015, , .		1
160	Opportunities and constraints of using understory plants to set forest restoration and conservation priorities. , 2001, , 227-243.		0
161	Vingt-deux espèces d'arbres autochtones plantées en arboretum à Korhogo au nord de la Côte d'Ivoire : trois décennies de suivi. Bois Et Forets Des Tropiques, 0, 348, .	² 0.2	0
162	Managing degraded forests, a new priority in the Brazilian Amazon. Perspective, 2017, , 1-4.	0.3	0

#	Article	IF	CITATIONS
163	Les concessions d'exploitation forestière menacent-elles les tourbières en République démocratique du Congo ?. Bois Et Forets Des Tropiques, 0, 334, 3.	0.2	о
164	Are logging concessions a threat to the peatlands in DRC?. Bois Et Forets Des Tropiques, 0, 334, 5.	0.2	0