
Ho-Shin Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5721428/publications.pdf Version: 2024-02-01

HO-SHIN CHO

#	Article	IF	CITATIONS
1	In-Body Sequential Multidrug Delivery Scheme Using Molecular Communication. IEEE Access, 2022, 10, 39975-39985.	4.2	3
2	Reinforcement Learning-Based Power Control for MACA-Based Underwater MAC Protocol. IEEE Access, 2022, 10, 71044-71053.	4.2	1
3	A Time-Slotted Data Gathering Medium Access Control Protocol Using Q-Learning for Underwater Acoustic Sensor Networks. IEEE Access, 2021, 9, 48742-48752.	4.2	16
4	A Molecular Communication-Based Simultaneous Targeted-Drug Delivery Scheme. IEEE Access, 2021, 9, 96658-96670.	4.2	7
5	Genetic Algorithm-Based Energy Efficiency Maximization for Social-Aware Device-to-Device Communications. IEEE Access, 2021, 9, 71920-71931.	4.2	4
6	Timing Alignment in Molecular-Communication-Based Nanonetworks. IEEE Communications Magazine, 2021, 59, 54-60.	6.1	0
7	A TDMA-Based Data Gathering Protocol for Molecular Communication via Diffusion-Based Nano-Sensor Networks. IEEE Sensors Journal, 2021, 21, 19582-19595.	4.7	5
8	Probability Distribution of a Signal's Peak Time in a Molecular Diffusive Media. IEEE Communications Letters, 2021, 25, 3833-3837.	4.1	1
9	Power Control for MACA-based Underwater MAC Protocol: A Q-Learning Approach. , 2021, , .		5
10	A Simultaneous Drug Release Scheme for Targeted Drug Delivery Using Molecular Communications. IEEE Access, 2020, 8, 91770-91778.	4.2	8
11	Effect of Link Misalignment in the Optical-Internet of Underwater Things. Electronics (Switzerland), 2020, 9, 646.	3.1	18
12	A Signaling-Free Underwater Code Division Multiple Access Scheme. Electronics (Switzerland), 2019, 8, 880.	3.1	2
13	Interference Management Using Crossed-Slot in Dynamic Time Division Duplexing Systems. IEEE Access, 2019, 7, 135377-135385.	4.2	4
14	A Time-Slotted Molecular Communication (TS-MOC): Framework and Time-Slot Errors. IEEE Access, 2019, 7, 78146-78158.	4.2	12
15	Social-Aware Peer Selection for Device-to-Device Communications in Dense Small-Cell Networks. Electronics (Switzerland), 2019, 8, 670.	3.1	5
16	Topology-Aware Reinforcement Learning Routing Protocol in Underwater Wireless Sensor Networks. , 2019, , .		5
17	UCMAC: A Cooperative MAC Protocol for Underwater Wireless Sensor Networks. Sensors, 2018, 18, 1969.	3.8	14
18	Biological Oscillators in Nanonetworks—Opportunities and Challenges. Sensors, 2018, 18, 1544.	3.8	16

Но-Ѕнім Сно

#	Article	IF	CITATIONS
19	Power Allocation Scheme for Non-Orthogonal Multiple Access in Underwater Acoustic Communications. Sensors, 2017, 17, 2465.	3.8	22
20	Network Allocation Vector (NAV) Optimization for Underwater Handshaking-Based Protocols. Sensors, 2017, 17, 32.	3.8	7
21	OrMAC: A Hybrid MAC Protocol Using Orthogonal Codes for Channel Access in M2M Networks. Sensors, 2017, 17, 2138.	3.8	3
22	SOUNET: Self-Organized Underwater Wireless Sensor Network. Sensors, 2017, 17, 0283.	3.8	14
23	Performance evaluation of diversity reception of underwater acoustic code division multiple access using lake experiment. Journal of the Acoustical Society of Korea, 2017, 36, 39-48.	0.1	О
24	Data-Gathering Scheme Using AUVs in Large-Scale Underwater Sensor Networks: A Multihop Approach. Sensors, 2016, 16, 1626.	3.8	36
25	A multihop data-gathering scheme using multiple AUVs in hierarchical underwater sensor networks. , 2016, , .		3
26	A Biochemical Oscillator Using Excitatory Molecules for Nanonetworks. IEEE Transactions on Nanobioscience, 2016, 15, 765-774.	3.3	4
27	Throughput and Delay Analysis of an Underwater CSMA/CA Protocol with Multi-RTS and Multi-DATA Receptions. International Journal of Distributed Sensor Networks, 2016, 12, 2086279.	2.2	6
28	A Hybrid Sender- and Receiver-Initiated Protocol Scheme in Underwater Acoustic Sensor Networks. Sensors, 2015, 15, 28052-28069.	3.8	10
29	A Distributed Data-Gathering Protocol Using AUV in Underwater Sensor Networks. Sensors, 2015, 15, 19331-19350.	3.8	88
30	Time-Efficient High-Rate Data Flooding in One-Dimensional Acoustic Underwater Sensor Networks. Sensors, 2015, 15, 27671-27691.	3.8	2
31	Closed-Loop Power Control for Code Division Multiple Access in Time-Varying Underwater Acoustic Channel. Journal of the Institute of Electronics and Information Engineers, 2015, 52, 32-40.	0.0	Ο
32	Cascading Multi-Hop Reservation and Transmission in Underwater Acoustic Sensor Networks. Sensors, 2014, 14, 18390-18409.	3.8	21
33	A Fast Converged Solution for Power Allocation of OFDMA System. Journal of Electrical Engineering and Technology, 2014, 9, 721-725.	2.0	1
34	Throughput and Energy Efficiency of a Cooperative Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks. Sensors, 2013, 13, 15385-15408.	3.8	16
35	A Network Coding Scheme with Code Division Multiple Access in Underwater Acoustic Sensor Networks. Journal of the Acoustical Society of Korea, 2013, 32, 86-94.	0.1	1
36	A Self-organized Network Topology Configuration in Underwater Sensor Networks. Journal of the Acoustical Society of Korea, 2012, 31, 542-550.	0.1	0

Но-Ѕнім Сно

#	Article	IF	CITATIONS
37	A cooperative ARQ scheme for multi-hop underwater acoustic sensor networks. , 2011, , .		10
38	Impact of MAC on Localization in Large-Scale Seabed Sensor Networks. , 2011, , .		5
39	A delay-tolerant OFDMA-based MAC protocol for underwater acoustic sensor networks. , 2011, , .		20
40	System Dwelling Times of Secondary Call in Cognitive Radio Systems. IEICE Transactions on Communications, 2011, E94-B, 2170-2173.	0.7	1
41	An Efficient ARQ for Multi-Hop Underwater Acoustic Channel with Long Propagation Delay and High Bit-Error Rate. Journal of the Acoustical Society of Korea, 2011, 30, 86-91.	0.1	0
42	A cooperative ARQ scheme in underwater acoustic sensor networks. , 2010, , .		25
43	Radio Resource Allocation for Real-Time Traffic with Multi-Level Delay Constraint in OFDMA System. IEICE Transactions on Communications, 2010, E93-B, 1224-1231.	0.7	1
44	A CDMA-Based MAC Protocol in Tree-Topology for Underwater Acoustic Sensor Networks. , 2009, , .		11
45	Performance analysis of an elevator system during up-peak. Mathematical and Computer Modelling, 2009, 49, 423-431.	2.0	31
46	A power allocation scheme maximizing a discrete capacity function of OFDMA system. , 2009, , .		0
47	Mathematical Analysis of Secondary User Traffic in Cognitive Radio System. , 2008, , .		42
48	An Improved ARQ Scheme in Underwater Acoustic Sensor Networks. , 2008, , .		18
49	A Heuristic Method for Channel Allocation and Scheduling in an OFDMA System. ETRI Journal, 2008, 30, 741-743.	2.0	9
50	A Mathematical Derivation of a Resource Allocation Matrix for an OFDMA System. , 2007, , .		0
51	A Packet Scheduling Scheme to Support Real-Time Traffic in OFDMA Systems. IEEE Vehicular Technology Conference, 2007, , .	0.4	12
52	Experimental study on the effect of codirectional Raman gain on system's performance. Optics Express, 2007, 15, 6146.	3.4	4
53	A Novel Channel Allocation and Scheduling Algorithm in OFDMA System. , 2006, , .		7
54	Call Blocking Probability for Heterogeneous and Asymmetrical Traffics in a TD-CDMA System. IEEE Communications Letters, 2004, 8, 706-708.	4.1	0

Но-Ѕнім Сно

#	Article	IF	CITATIONS
55	Capacity analysis of spectrally overlaid macro/microcellular cdma systems supporting multiple types of traffic. IEEE Transactions on Vehicular Technology, 2003, 52, 333-346.	6.3	16
56	Four-sector cross-shaped urban microcellular systems with intelligent switched-beam antennas. IEEE Transactions on Vehicular Technology, 2001, 50, 592-604.	6.3	4
57	A comparison of system performance using two different chip pulses in multiple-chip-rate DS/CDMA systems. IEEE Transactions on Communications, 2001, 49, 1988-1996.	7.8	7
58	Performance analysis of cross- and cigar-shaped urban microcells considering user mobility characteristics. IEEE Transactions on Vehicular Technology, 2000, 49, 105-116.	6.3	22
59	High reuse efficiency of radio resources in urban microcellular systems. IEEE Transactions on Vehicular Technology, 2000, 49, 1669-1677.	6.3	4
60	A movable safety zone scheme in urban fiber-optic microcellular systems. IEEE Transactions on Vehicular Technology, 1999, 48, 1099-1109.	6.3	5
61	Packet-level performance under mixed-traffic conditions in TD-CDMA/TDD system. , 0, , .		Ο