
Paula Marchelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5721416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2009–30 November 2009. Molecular Ecology Resources, 2010, 10, 404-408.	4.8	84
2	Chloroplast DNA markers reveal a geographical divide across Argentinean southern beech Nothofagus nervosa (Phil.) Dim. et Mil. distribution area. Theoretical and Applied Genetics, 1998, 97, 642-646.	3.6	75
3	The effects of Quaternary glaciations in Patagonia as evidenced by chloroplast DNA phylogeography of Southern beech Nothofagus obliqua. Tree Genetics and Genomes, 2009, 5, 561-571.	1.6	47
4	The combined role of glaciation and hybridization in shaping the distribution of genetic variation in a Patagonian southern beech. Journal of Biogeography, 2004, 31, 451-460.	3.0	42
5	Annual and geographic variation in seed traits of Argentinean populations of southern beech Nothofagus nervosa (Phil.) Dim. et Mil Forest Ecology and Management, 1999, 121, 239-250.	3.2	37
6	Natural Hybridization between a Deciduous (Nothofagus antarctica, Nothofagaceae) and an Evergreen (N. dombeyi) Forest Tree Species: Evidence from Morphological and Isoenzymatic Traits. Annals of Botany, 2004, 94, 775-786.	2.9	36
7	Biogeographic history of the threatened species Araucaria araucana (Molina) K. Koch and implications for conservation: a case study with organelle DNA markers. Conservation Genetics, 2010, 11, 951-963.	1.5	36
8	Genetic diversity and differentiation in a southern beech subjected to introgressive hybridization. Heredity, 2001, 87, 284-293.	2.6	35
9	High genetic variation in marginal fragmented populations at extreme climatic conditions of the Patagonian Cypress Austrocedrus chilensis. Molecular Phylogenetics and Evolution, 2010, 54, 941-949.	2.7	32
10	Wide spread invasion without sexual reproduction? A case study on European willows in Patagonia, Argentina. Biological Invasions, 2011, 13, 45-54.	2.4	32
11	Management of Nothofagus genetic resources: Definition of genetic zones based on a combination of nuclear and chloroplast marker data. Forest Ecology and Management, 2013, 302, 414-424.	3.2	31
12	The effect of different glaciation patterns over the current genetic structure of the southern beech Nothofagus antarctica. Genetica, 2009, 136, 79-88.	1.1	27
13	Phylogeography of two hybridizing southern beeches (Nothofagus spp.) with different adaptive abilities. Tree Genetics and Genomes, 2012, 8, 659-673.	1.6	25
14	Short-distance pollen dispersal for an outcrossed, wind-pollinated southern beech (Nothofagus) Tj ETQq0 0 0 rgE	BT /Overloo 1.6	ck 10 Tf 50 2: 24
15	Ectomycorrhizas Naturally Established in Nothofagus nervosa Seedlings Under Different Cultivation Practices in a Forest Nursery. Microbial Ecology, 2013, 66, 581-592.	2.8	23
16	Primer Note: A New Set of Highly Polymorphic Nuclear Microsatellite Markers for Nothofagus nervosa and Related South American Species. Silvae Genetica, 2008, 57, 82-85.	0.8	21

17	Knowing and Doing: Research Leading to Action in the Conservation of Forest Genetic Diversity of Patagonian Temperate Forests. Conservation Biology, 2009, 23, 895-898.	4.7	20	
18	Yeast and yeast-like fungi associated with dry indehiscent fruits of <i>Nothofagus nervosa</i> in	2.7	20	

18 Patagonia, Argentina. FEMS Microbiology Ecology, 2012, 80, 179-192. 2.7

Paula Marchelli

#	Article	IF	CITATIONS
19	Halfway encounters: Meeting points of colonization routes among the southern beeches Nothofagus pumilio and N. antarctica. Molecular Phylogenetics and Evolution, 2015, 85, 197-207.	2.7	20
20	MASTREE+: Timeâ€series of plant reproductive effort from six continents. Global Change Biology, 2022, 28, 3066-3082.	9.5	19
21	Transcriptome survey of Patagonian southern beech Nothofagus nervosa (= N. Alpina): assembly, annotation and molecular marker discovery. BMC Genomics, 2012, 13, 291.	2.8	18
22	Integrating genetics and suitability modelling to bolster climate change adaptation planning in Patagonian Nothofagus forests. Tree Genetics and Genomes, 2017, 13, 1.	1.6	18
23	Ectomycorrhizal fungal communities in Nothofagus nervosa (RaulÃ-): A comparison between domesticated and naturally established specimens in a native forest of Patagonia, Argentina. Fungal Ecology, 2015, 18, 36-47.	1.6	15
24	Are the rhizosphere fungal communities of Nothofagus alpina established in two different environments influenced by plant genetic diversity?. Forest Ecology and Management, 2020, 473, 118269.	3.2	14
25	Extensive pollen flow in a natural fragmented population of Patagonian cypress Austrocedrus chilensis. Tree Genetics and Genomes, 2014, 10, 1519-1529.	1.6	13
26	Germination response to water availability in populations of Festuca pallescens along a Patagonian rainfall gradient based on hydrotime model parameters. Scientific Reports, 2021, 11, 10653.	3.3	12
27	The effect of volcanism on postglacial migration and seed dispersal. A case study in southern South America. Tree Genetics and Genomes, 2008, 4, 435-443.	1.6	11
28	Seed responses to temperature indicate different germination strategies among Festuca pallescens populations from semi-arid environments in North Patagonia. Agricultural and Forest Meteorology, 2019, 272-273, 81-90.	4.8	11
29	Cross transferability of SSRs to five species of Araucariaceae: a useful tool for population genetic studies in Araucaria araucana. Forest Systems, 2011, 20, 303.	0.3	11
30	Characterization of 23 polymorphic SSR markers in <i>Salix humboldtiana</i> (Salicaceae) using nextâ€generation sequencing and crossâ€amplification from related species. Applications in Plant Sciences, 2015, 3, 1400120.	2.1	9
31	Logging by selective extraction of best trees: Does it change patterns of genetic diversity? The case of Nothofagus pumilio. Forest Ecology and Management, 2016, 373, 81-92.	3.2	9
32	Genetic diversity and population structure in Nothofagus pumilio, a foundation species of Patagonian forests: defining priority conservation areas and management. Scientific Reports, 2020, 10, 19231.	3.3	9
33	Local adaptation along a sharp rainfall gradient occurs in a native Patagonian grass, Festuca pallescens, regardless of extensive gene flow. Environmental and Experimental Botany, 2020, 171, 103933.	4.2	7
34	Different drought-adaptive capacity of a native Patagonian tree species (Nothofagus pumilio) resulting from local adaptation. European Journal of Forest Research, 2021, 140, 1147-1161.	2.5	7
35	Robles in Lagunas de Epulauquen, Argentina: previous and recent evidence of their distinctive character. Revista Chilena De Historia Natural, 2014, 87, .	1.2	6
36	Staying close: short local dispersal distances on a managed forest of two Patagonian Nothofagus species. Forestry, 2020, 93, 652-661.	2.3	6

Paula Marchelli

#	Article	IF	CITATIONS
37	Differentiation in phenology among and within natural populations of a South American Nothofagus revealed by a two-year evaluation in a common garden trial. Forest Ecology and Management, 2020, 460, 117858.	3.2	6
38	Deciphering the transcriptomic regulation of heat stress responses in Nothofagus pumilio. PLoS ONE, 2021, 16, e0246615.	2.5	6
39	El uso de marcadores genéticos en el género Nothofagus con especial referencia a raulÃ-y roble. Bosque, 2006, 27, 3.	0.3	5
40	Phylogenetic relationships and intraspecific diversity of a North Patagonian Fescue: evidence of differentiation and interspecific introgression at peripheral populations. Folia Geobotanica, 2018, 53, 115-131.	0.9	5
41	Understanding introduction history: Genetic structure and diversity of the edible ectomycorrhizal fungus, <i>Suillus luteus</i> , in Patagonia (Argentina). Mycologia, 2021, 113, 715-724.	1.9	5
42	Clinal variation along precipitation gradients in Patagonian temperate forests: unravelling demographic and selection signatures in three Nothofagus spp Annals of Forest Science, 2020, 77, 1.	2.0	5
43	Genetic variation in seedling water-use efficiency of Patagonian Cypress populations from contrasting precipitation regimes assessed through carbon isotope discrimination. Forest Systems, 2012, 21, 189.	0.3	5
44	Development of highly polymorphic tetranucleotide microsatellite markers in <i>Austrocedrus chilensis</i> . Molecular Ecology Resources, 2008, 8, 887-889.	4.8	3
45	RaulÃ-(Nothofagus alpinaÂ=ÂN. nervosa): The Best Quality Hardwood in Patagonia. , 2021, , 55-87.		3
46	Water-mediated changes in plant–plant and biological soil crust–plant interactions in a temperate forest ecosystem. Web Ecology, 2019, 19, 27-38.	1.6	3
47	Stand development stages and recruitment patterns influence fine-scale spatial genetic structure in two Patagonian Nothofagus species. Annals of Forest Science, 2022, 79, .	2.0	2
48	DNA sequence variation of drought-response candidate genes in Austrocedrus chilensis. Electronic Journal of Biotechnology, 2013, 16, .	2.2	1
49	Genetic Resources: The Base Material for Managing Nature. , 2021, , .		0
50	Host genetics determines food preferences of the moth Perzelia arda (Lepidoptera: Depressariidae). Agricultural and Forest Entomology, 0, , .	1.3	0