Cesar Mateo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5721354/publications.pdf Version: 2024-02-01

CESAD MATEO

#	Article	IF	CITATIONS
1	Production and Digestibility Studies of β-Galactosyl Xylitol Derivatives Using Heterogeneous Catalysts of LacA β-Galactosidase from Lactobacillus Plantarum WCFS1. Molecules, 2022, 27, 1235.	1.7	1
2	Special Issue "Biocatalysts: Design and Application― Catalysts, 2021, 11, 778.	1.6	0
3	Recent Trends in Biomaterials for Immobilization of Lipases for Application in Non-Conventional Media. Catalysts, 2020, 10, 697.	1.6	36
4	Multi-Point Covalent Immobilization of Enzymes on Glyoxyl Agarose with Minimal Physico-Chemical Modification: Stabilization of Industrial Enzymes. Methods in Molecular Biology, 2020, 2100, 93-107.	0.4	11
5	Cross-Linking with Polyethylenimine Confers Better Functional Characteristics to an Immobilized l²-glucosidase from Exiguobacterium antarcticum B7. Catalysts, 2019, 9, 223.	1.6	6
6	An immobilized acetylcholinesterase as test system to screen new inhibitor drugs to treat Alzheimer's disease. Sensors and Actuators B: Chemical, 2019, 278, 196-201.	4.0	9
7	Asymmetric and Selective Biocatalysis. Catalysts, 2018, 8, 588.	1.6	0
8	Co-expression, purification and characterization of the lipase and foldase of Burkholderia contaminans LTEB11. International Journal of Biological Macromolecules, 2018, 116, 1222-1231.	3.6	10
9	Biocatalytic Process Optimization for the Production of Highâ€Addedâ€Value 6â€ <i>O</i> â€Hydroxy and 3â€ <i>O</i> â€Hydroxy Glycosyl Building Blocks. ChemCatChem, 2017, 9, 2536-2543.	1.8	3
10	New Heterofunctional Supports Based on Glutaraldehyde-Activation: A Tool for Enzyme Immobilization at Neutral pH. Molecules, 2017, 22, 1088.	1.7	39
11	New Tailor-Made Alkyl-Aldehyde Bifunctional Supports for Lipase Immobilization. Catalysts, 2016, 6, 191.	1.6	13
12	Novel support for enzyme immobilization prepared by chemical activation with cysteine and glutaraldehyde. Journal of Molecular Catalysis B: Enzymatic, 2014, 102, 218-224.	1.8	43
13	Oxidation of phenyl compounds using strongly stable immobilized-stabilized laccase from Trametes versicolor. Process Biochemistry, 2013, 48, 1174-1180.	1.8	40
14	Continuous production of xylooligosaccharides in a packed bed reactor with immobilized–stabilized biocatalysts of xylanase from Aspergillus versicolor. Journal of Molecular Catalysis B: Enzymatic, 2013, 98, 8-14.	1.8	37
15	Production of xylo-oligosaccharides by immobilized-stabilized derivatives of endo-xylanase from Streptomyces halstedii. Process Biochemistry, 2013, 48, 478-483.	1.8	29
16	Immobilisation and stabilisation of β-galactosidase from Kluyveromyces lactis using a glyoxyl support. International Dairy Journal, 2013, 28, 76-82.	1.5	16
17	Oriented Covalent Immobilization of Enzymes on Heterofunctional-Glyoxyl Supports. Methods in Molecular Biology, 2013, 1051, 73-88.	0.4	10
18	Stabilization of a highly active but unstable alcohol dehydrogenase from yeast using immobilization and post-immobilization techniques. Process Biochemistry, 2012, 47, 679-686.	1.8	40

CESAR MATEO

#	Article	IF	CITATIONS
19	β-Glucosidase immobilized and stabilized on agarose matrix functionalized with distinct reactive groups. Journal of Molecular Catalysis B: Enzymatic, 2011, 69, 47-53.	1.8	35
20	Purification, immobilization, and characterization of a specific lipase from <i>Staphylococcus warneri</i> EX17 by enzyme fractionating via adsorption on different hydrophobic supports. Biotechnology Progress, 2011, 27, 717-723.	1.3	12
21	Promotion of multipoint covalent immobilization through different regions of genetically modified penicillin G acylase from E. coli. Process Biochemistry, 2010, 45, 390-398.	1.8	55
22	Heterofunctional supports for the one-step purification, immobilization and stabilization of large multimeric enzymes: Amino-glyoxyl versus amino-epoxy supports. Process Biochemistry, 2010, 45, 1692-1698.	1.8	56
23	Improvement of Enzyme Properties with a Two-Step Immobilizaton Process on Novel Heterofunctional Supports. Biomacromolecules, 2010, 11, 3112-3117.	2.6	93
24	Purification and stabilization of a glutamate dehygrogenase from Thermus thermophilus via oriented multisubunit plus multipoint covalent immobilization. Journal of Molecular Catalysis B: Enzymatic, 2009, 58, 158-163.	1.8	53
25	Modulation of a lipase from Staphylococcus warneri EX17 using immobilization techniques. Journal of Molecular Catalysis B: Enzymatic, 2009, 60, 125-132.	1.8	20
26	The presence of thiolated compounds allows the immobilization of enzymes on glyoxyl agarose at mild pH values: New strategies of stabilization by multipoint covalent attachment. Enzyme and Microbial Technology, 2009, 45, 477-483.	1.6	46
27	The co-operative effect of physical and covalent protein adsorption on heterofunctional supports. Process Biochemistry, 2009, 44, 757-763.	1.8	40
28	The adsorption of multimeric enzymes on very lowly activated supports involves more enzyme subunits: Stabilization of a glutamate dehydrogenase from Thermus thermophilus by immobilization on heterofunctional supports. Enzyme and Microbial Technology, 2009, 44, 139-144.	1.6	39
29	Coating of Soluble and Immobilized Enzymes with Ionic Polymers: Full Stabilization of the Quaternary Structure of Multimeric Enzymes. Biomacromolecules, 2009, 10, 742-747.	2.6	111
30	Immobilization–stabilization of a new recombinant glutamate dehydrogenase from Thermus thermophilus. Applied Microbiology and Biotechnology, 2008, 80, 49-58.	1.7	42
31	Stabilization of a Multimeric β-Galactosidase from Thermus sp. Strain T2 by Immobilization on Novel Heterofunctional Epoxy Supports Plus Aldehyde-Dextran Cross-Linking. Biotechnology Progress, 2008, 20, 388-392.	1.3	44
32	New Cationic Exchanger Support for Reversible Immobilization of Proteins. Biotechnology Progress, 2008, 20, 284-288.	1.3	37
33	Reversible Immobilization of Clutaryl Acylase on Sepabeads Coated with Polyethyleneimine. Biotechnology Progress, 2008, 20, 533-536.	1.3	23
34	Partial Purification and Immobilization/Stabilization on Highly Activated Glyoxyl-agarose Supports of Different Proteases from Flavourzyme. Journal of Agricultural and Food Chemistry, 2007, 55, 6503-6508.	2.4	9
35	Mixed Ion Exchange Supports as Useful Ion Exchangers for Protein Purification:Â Purification of Penicillin G Acylase fromEscherichia coli. Biomacromolecules, 2007, 8, 703-707.	2.6	40
36	Preparation of a very stable immobilized Solanum tuberosum epoxide hydrolase. Tetrahedron: Asymmetry, 2007, 18, 1233-1238.	1.8	20

CESAR MATEO

#	Article	IF	CITATIONS
37	Stabilization of different alcohol oxidases via immobilization and post immobilization techniques. Enzyme and Microbial Technology, 2007, 40, 278-284.	1.6	66
38	Effect of the support and experimental conditions in the intensity of the multipoint covalent attachment of proteins on glyoxyl-agarose supports: Correlation between enzyme–support linkages and thermal stability. Enzyme and Microbial Technology, 2007, 40, 1160-1166.	1.6	200
39	Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 2007, 40, 1451-1463.	1.6	2,864
40	Immobilization of enzymes on heterofunctional epoxy supports. Nature Protocols, 2007, 2, 1022-1033.	5.5	269
41	Improvement of the stability of alcohol dehydrogenase by covalent immobilization on glyoxyl-agarose. Journal of Biotechnology, 2006, 125, 85-94.	1.9	86
42	Glutaraldehyde Cross-Linking of Lipases Adsorbed on Aminated Supports in the Presence of Detergents Leads to Improved Performance. Biomacromolecules, 2006, 7, 2610-2615.	2.6	121
43	Glyoxyl agarose: A fully inert and hydrophilic support for immobilization and high stabilization of proteins. Enzyme and Microbial Technology, 2006, 39, 274-280.	1.6	347
44	Use of polyvalent cations to improve the adsorption strength between adsorbed enzymes and supports coated with dextran sulfate. Enzyme and Microbial Technology, 2006, 39, 332-336.	1.6	6
45	Some special features of glyoxyl supports to immobilize proteins. Enzyme and Microbial Technology, 2005, 37, 456-462.	1.6	257
46	Dextran aldehyde coating of glucose oxidase immobilized on magnetic nanoparticles prevents its inactivation by gas bubbles. Journal of Molecular Catalysis B: Enzymatic, 2005, 32, 97-101.	1.8	106
47	Immobilization and stabilization of glutaryl acylase on aminated sepabeads supports by the glutaraldehyde crosslinking method. Journal of Molecular Catalysis B: Enzymatic, 2005, 35, 57-61.	1.8	59
48	Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. Journal of Biotechnology, 2005, 119, 70-75.	1.9	259
49	Reversible and strong immobilization of proteins by ionic exchange on supports coated with sulfate-dextran. Biotechnology Progress, 2004, 20, 1134-1139.	1.3	82
50	Immobilization of lactase from Kluyveromyces lactis greatly reduces the inhibition promoted by glucose. full hydrolysis of lactose in milk. Biotechnology Progress, 2004, 20, 1259-1262.	1.3	90
51	Resolution of paroxetine precursor using different lipases. Enzyme and Microbial Technology, 2004, 34, 264-269.	1.6	14
52	Improving the Activity of Lipases from Thermophilic Organisms at Mesophilic Temperatures for Biotechnology Applications. Biomacromolecules, 2004, 5, 249-254.	2.6	26
53	Self-assembly ofPseudomonas fluorescenslipase into bimolecular aggregates dramatically affects functional properties. Biotechnology and Bioengineering, 2003, 82, 232-237.	1.7	119
54	Reversible immobilization of a thermophilic Î ² -galactosidase via ionic adsorption on PEI-coated Sepabeads. Enzyme and Microbial Technology, 2003, 32, 369-374.	1.6	80

CESAR MATEO

#	Article	IF	CITATIONS
55	The immobilization of a thermophilic β-galactosidase on Sepabeads supports decreases product inhibition. Enzyme and Microbial Technology, 2003, 33, 199-205.	1.6	110
56	Improving the Industrial Production of 6-APA: Enzymatic Hydrolysis of Penicillin G in the Presence of Organic Solvents. Biotechnology Progress, 2003, 19, 1639-1642.	1.3	36
57	General Trend of Lipase to Self-Assemble Giving Bimolecular Aggregates Greatly Modifies the Enzyme Functionality. Biomacromolecules, 2003, 4, 1-6.	2.6	212
58	Novel Bifunctional Epoxy/Thiol-Reactive Support to Immobilize Thiol Containing Proteins by the Epoxy Chemistry. Biomacromolecules, 2003, 4, 1495-1501.	2.6	84
59	Solid-Phase Handling of Hydrophobins:Â Immobilized Hydrophobins as a New Tool To Study Lipases. Biomacromolecules, 2003, 4, 204-210.	2.6	96
60	Enzymatic transformations. Immobilized A. niger epoxide hydrolase as a novel biocatalytic tool for repeated-batch hydrolytic kinetic resolution of epoxidesPart 54. For part 53 see ref. 21 Organic and Biomolecular Chemistry, 2003, 1, 2739.	1.5	39
61	Overproduction of Thermus sp. Strain T2 β-Galactosidase in Escherichia coli and Preparation by Using Tailor-Made Metal Chelate Supports. Applied and Environmental Microbiology, 2003, 69, 1967-1972.	1.4	38
62	Interfacial adsorption of lipases on very hydrophobic support (octadecyl–Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 279-286.	1.8	384
63	Modulation of the enantioselectivity of lipases via controlled immobilization and medium engineering: hydrolytic resolution of mandelic acid esters. Enzyme and Microbial Technology, 2002, 31, 775-783.	1.6	160
64	Stabilization–immobilization of carboxypeptidase A to aldehyde–agarose gels. Enzyme and Microbial Technology, 2002, 31, 711-718.	1.6	36
65	Coimmobilization of L-asparaginase and glutamate dehydrogenase onto highly activated supports. Enzyme and Microbial Technology, 2001, 28, 696-704.	1.6	35
66	One-step purification, covalent immobilization, and additional stabilization of poly-His-tagged proteins using novel heterofunctional chelate-epoxy supports. Biotechnology and Bioengineering, 2001, 76, 269-276.	1.7	103
67	Reversible enzyme immobilization via a very strong and nondistorting ionic adsorption on support-polyethylenimine composites. , 2000, 68, 98-105.		225
68	Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachmentâ [~] †. Enzyme and Microbial Technology, 2000, 26, 509-515.	1.6	316
69	Multifunctional Epoxy Supports:Â A New Tool To Improve the Covalent Immobilization of Proteins. The Promotion of Physical Adsorptions of Proteins on the Supports before Their Covalent Linkage. Biomacromolecules, 2000, 1, 739-745.	2.6	281