Yuh Fen Pung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/572107/publications.pdf Version: 2024-02-01

YUH FEN PUNC

#	Article	IF	CITATIONS
1	Mitochondrial DNA integrity and function are critical for endothelium-dependent vasodilation in rats with metabolic syndrome. Basic Research in Cardiology, 2022, 117, 3.	5.9	12
2	POTENTIAL MEDICINAL HERB FOR CARDIOVASCULAR HEALTH: A COMPREHENSIVE REVIEW ON Salviae miltiorrhizae. , 2022, 51, 1-20.		0
3	Current Updates On the In vivo Assessment of Zinc Oxide Nanoparticles Toxicity Using Animal Models. BioNanoScience, 2021, 11, 590-620.	3.5	19
4	Exosomal microRNAs in the development of essential hypertension and its potential as biomarkers. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1486-H1497.	3.2	17
5	Intracellular and exosomal microRNAome profiling of human vascular smooth muscle cells during replicative senescence. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H770-H783.	3.2	11
6	Uncovering Dysregulated Microâ€RNA Expression in Senescent Human Vascular Smooth Muscle Cells: Impacts on Cellular Communication and Vascular Aging. FASEB Journal, 2020, 34, 1-1.	0.5	1
7	The current understanding of the interactions between nanoparticles and cytochrome P450 enzymes – a literature-based review. Xenobiotica, 2019, 49, 863-876.	1.1	9
8	Antibacterial activity by ZnO nanorods and ZnO nanodisks: A model used to illustrate "Nanotoxicity Threshold― Journal of Industrial and Engineering Chemistry, 2018, 62, 333-340.	5.8	40
9	Photocatalytic activity of ZnO nanodisks in degradation of Rhodamine B and Bromocresol Green under UV light exposure. Journal of Physics: Conference Series, 2018, 1082, 012085.	0.4	3
10	Rhodomine B dye removal and inhibitory effect on B. subtilis and S. aureus by WOx nanoparticles. Journal of Industrial and Engineering Chemistry, 2018, 67, 437-447.	5.8	5
11	The JCR:LA-cp rat: a novel rodent model of cystic medial necrosis. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H541-H545.	3.2	1
12	Impaired coronary metabolic dilation in the metabolic syndrome is linked to mitochondrial dysfunction and mitochondrial DNA damage. Basic Research in Cardiology, 2016, 111, 29.	5.9	22
13	The role of mitochondrial bioenergetics and reactive oxygen species in coronary collateral growth. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1275-H1280.	3.2	11
14	Mitochondrial Oxidative Stress Corrupts Coronary Collateral Growth by Activating Adenosine Monophosphate Activated Kinase-1± Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1911-1919.	2.4	22
15	Resolution of Mitochondrial Oxidative Stress Rescues Coronary Collateral Growth in Zucker Obese Fatty Rats. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 325-334.	2.4	57
16	Coronary collateral growth—Back to the future. Journal of Molecular and Cellular Cardiology, 2012, 52, 905-911.	1.9	51
17	Induction of Vascular Progenitor Cells From Endothelial Cells Stimulates Coronary Collateral Growth. Circulation Research, 2012, 110, 241-252.	4.5	43
18	Gender differences in cardiac function of Kv1.5â^'/â^' mice during aging. FASEB Journal, 2012, 26, 860.13.	0.5	0

Yuh Fen Pung

#	Article	IF	CITATIONS
19	Mitochondrial DNA Fragmentation Impairs Endothelial Function In Zucker Lean Rats. FASEB Journal, 2012, 26, 1137.11.	0.5	0
20	The Importance of Polycystin 1 (PC1) in Endothelial Mitochondrial Bioenergetics. FASEB Journal, 2012, 26, 887.10.	0.5	0
21	Corruption of coronary collateral growth in metabolic syndrome: Role of oxidative stress. World Journal of Cardiology, 2010, 2, 421.	1.5	27
22	Mitochondrial Complex I Deficiency is One of the Major Causes of Mitochondrial Oxidative Stess in Zucker Obese Fatty Rat. FASEB Journal, 2010, 24, 1018.4.	0.5	0
23	Stimulation of Coronary Collateral Growth by Granulocyte Stimulating Factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1817-1822.	2.4	25
24	Sepiapterin reductase regulation of endothelial tetrahydrobiopterin and nitric oxide bioavailability. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H331-H339.	3.2	29
25	Amplification of Coronary Arteriogenic Capacity of Multipotent Stromal Cells by Epidermal Growth Factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 802-808.	2.4	25
26	Redox-Dependent Mechanisms in Coronary Collateral Growth: The "Redox Window―Hypothesis. Antioxidants and Redox Signaling, 2009, 11, 1961-1974.	5.4	66
27	Cardiac Phenotypic Differences in Rat Models of the Metabolic Syndrome. FASEB Journal, 2009, 23, .	0.5	0
28	Vascular Endothelial Growth Factor and the Collateral Circulation. Circulation Research, 2008, 103, 905-906.	4.5	2
29	βâ€Cardiotoxin: a new threeâ€finger toxin from <i>Ophiophagus hannah</i> (king cobra) venom with betaâ€blocker activity. FASEB Journal, 2007, 21, 3685-3695.	0.5	82
30	Ohanin, a novel protein from king cobra venom: Its cDNA and genomic organization. Gene, 2006, 371, 246-256.	2.2	32
31	HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10735-10740.	7.1	233
32	Ohanin, a Novel Protein from King Cobra Venom, Induces Hypolocomotion and Hyperalgesia in Mice. Journal of Biological Chemistry, 2005, 280, 13137-13147.	3.4	85