## Amanda L Lewis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/572057/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Gardnerella vaginalis promotes group B Streptococcus vaginal colonization, enabling ascending<br>uteroplacental infection in pregnant mice. American Journal of Obstetrics and Gynecology, 2021, 224,<br>530.e1-530.e17. | 0.7 | 20        |
| 2  | The structure and diversity of strain-level variation in vaginal bacteria. Microbial Genomics, 2021, 7, .                                                                                                                | 1.0 | 11        |
| 3  | Vaginal sialoglycan foraging by <i>Gardnerella vaginalis</i> : mucus barriers as a meal for unwelcome guests?. Glycobiology, 2021, 31, 667-680.                                                                          | 1.3 | 19        |
| 4  | A mouse model displays host and bacterial strain differences in <i>Aerococcus urinae</i> urinary tract infection. Biology Open, 2021, 10, .                                                                              | 0.6 | 6         |
| 5  | Bladder Exposure to Gardnerella Activates Host Pathways Necessary for Escherichia coli Recurrent<br>UTI. Frontiers in Cellular and Infection Microbiology, 2021, 11, 788229.                                             | 1.8 | 6         |
| 6  | Associations between the vaginal microbiome and Candida colonization in women of reproductive age. American Journal of Obstetrics and Gynecology, 2020, 222, 471.e1-471.e9.                                              | 0.7 | 52        |
| 7  | Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. PLoS<br>Biology, 2020, 18, e3000788.                                                                                           | 2.6 | 30        |
| 8  | Gardnerella vaginalis as a Cause of Bacterial Vaginosis: Appraisal of the Evidence From in vivo Models.<br>Frontiers in Cellular and Infection Microbiology, 2020, 10, 168.                                              | 1.8 | 71        |
| 9  | <i>Aerococcus urinae</i> Isolated from Women with Lower Urinary Tract Symptoms: <i>In Vitro</i> Aggregation and Genome Analysis. Journal of Bacteriology, 2020, 202, .                                                   | 1.0 | 9         |
| 10 | Roles of the vagina and the vaginal microbiota in urinary tract infection: evidence from clinical correlations and experimental models. GMS Infectious Diseases, 2020, 8, Doc02.                                         | 0.5 | 22        |
| 11 | Recurrent <em>Escherichia coli </em> Urinary Tract Infection Triggered by<br><em>Cardnerella vaginalis </em> Bladder Exposure in Mice. Journal of Visualized<br>Experiments, 2020, , .                                   | 0.2 | 7         |
| 12 | Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. , 2020, 18, e3000788.                                                                                                          |     | 0         |
| 13 | Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. , 2020, 18, e3000788.                                                                                                          |     | 0         |
| 14 | Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. , 2020, 18, e3000788.                                                                                                          |     | 0         |
| 15 | Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. , 2020, 18, e3000788.                                                                                                          |     | Ο         |
| 16 | Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. , 2020, 18, e3000788.                                                                                                          |     | 0         |
| 17 | Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. , 2020, 18, e3000788.                                                                                                          |     | 0         |
| 18 | Low-dose inoculation of Escherichia coli achieves robust vaginal colonization and results in ascending infection accompanied by severe uterine inflammation in mice. PLoS ONE, 2019, 14, e0219941.                       | 1.1 | 14        |

Amanda L Lewis

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Gardnerella vaginalis and Prevotella bivia Trigger Distinct and Overlapping Phenotypes in a Mouse<br>Model of Bacterial Vaginosis. Journal of Infectious Diseases, 2019, 220, 1099-1108.                          | 1.9 | 71        |
| 20 | Association between obesity and bacterial vaginosis as assessed by Nugent score. American Journal of Obstetrics and Gynecology, 2019, 220, 476.e1-476.e11.                                                        | 0.7 | 50        |
| 21 | Covert pathogenesis: Transient exposures to microbes as triggers of disease. PLoS Pathogens, 2019, 15, e1007586.                                                                                                  | 2.1 | 7         |
| 22 | Identification and characterization of NanH2 and NanH3, enzymes responsible for sialidase activity in<br>the vaginal bacterium Gardnerella vaginalis. Journal of Biological Chemistry, 2019, 294, 5230-5245.      | 1.6 | 47        |
| 23 | Structural and functional characterization of a modified legionaminic acid involved in glycosylation of a bacterial lipopolysaccharide. Journal of Biological Chemistry, 2018, 293, 19113-19126.                  | 1.6 | 3         |
| 24 | Human milk oligosaccharides inhibit growth of group B Streptococcus. Journal of Biological<br>Chemistry, 2017, 292, 11243-11249.                                                                                  | 1.6 | 129       |
| 25 | The sialate O-acetylesterase EstA from gut Bacteroidetes species enables sialidase-mediated<br>cross-species foraging of 9-O-acetylated sialoglycans. Journal of Biological Chemistry, 2017, 292,<br>11861-11872. | 1.6 | 57        |
| 26 | A mucosal imprint left by prior Escherichia coli bladder infection sensitizes to recurrent disease.<br>Nature Microbiology, 2017, 2, 16196.                                                                       | 5.9 | 67        |
| 27 | Relationship between nugent score and vaginal epithelial exfoliation. PLoS ONE, 2017, 12, e0177797.                                                                                                               | 1.1 | 42        |
| 28 | Transient microbiota exposures activate dormant Escherichia coli infection in the bladder and drive severe outcomes of recurrent disease. PLoS Pathogens, 2017, 13, e1006238.                                     | 2.1 | 72        |
| 29 | Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract. Microbiology Spectrum, 2016, 4, .                                                            | 1.2 | 243       |
| 30 | Discovery and characterization ofde novosialic acid biosynthesis in the phylumFusobacterium.<br>Glycobiology, 2016, 26, 1107-1119.                                                                                | 1.3 | 12        |
| 31 | Genome Sequences of 11 Human Vaginal Actinobacteria Strains. Genome Announcements, 2016, 4, .                                                                                                                     | 0.8 | 7         |
| 32 | Genome Sequences of 12 Bacterial Isolates Obtained from the Urine of Pregnant Women. Genome<br>Announcements, 2016, 4, .                                                                                          | 0.8 | 3         |
| 33 | Genome Sequences of Nine Gram-Negative Vaginal Bacterial Isolates. Genome Announcements, 2016, 4, .                                                                                                               | 0.8 | 1         |
| 34 | A New Catalog of Microbiological Tools for Women's Infectious Disease Research. Genome<br>Announcements, 2016, 4, .                                                                                               | 0.8 | 0         |
| 35 | Genome Sequences of 15 Gardnerella vaginalis Strains Isolated from the Vaginas of Women with and<br>without Bacterial Vaginosis. Genome Announcements, 2016, 4, .                                                 | 0.8 | 9         |
| 36 | Genome Sequences of 14 <i>Firmicutes</i> Strains Isolated from the Human Vagina. Genome<br>Announcements, 2016, 4, .                                                                                              | 0.8 | 1         |

Amanda L Lewis

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Evolutionary inactivation of a sialidase in group B Streptococcus. Scientific Reports, 2016, 6, 28852.                                                                                                                                       | 1.6 | 31        |
| 38 | Host-Like Carbohydrates Promote Bloodstream Survival of Vibrio vulnificus <i>In Vivo</i> . Infection and Immunity, 2015, 83, 3126-3136.                                                                                                      | 1.0 | 19        |
| 39 | Impact of Host Age and Parity on Susceptibility to Severe Urinary Tract Infection in a Murine Model.<br>PLoS ONE, 2014, 9, e97798.                                                                                                           | 1.1 | 25        |
| 40 | Degradation, Foraging, and Depletion of Mucus Sialoglycans by the Vagina-adapted Actinobacterium<br>Gardnerella vaginalis. Journal of Biological Chemistry, 2013, 288, 12067-12079.                                                          | 1.6 | 138       |
| 41 | Urinary Tract Infection as a Preventable Cause of Pregnancy Complications: Opportunities,<br>Challenges, and a Global Call to Action. Global Advances in Health and Medicine, 2013, 2, 59-69.                                                | 0.7 | 93        |
| 42 | Clinical Features of Bacterial Vaginosis in a Murine Model of Vaginal Infection with Gardnerella<br>vaginalis. PLoS ONE, 2013, 8, e59539.                                                                                                    | 1.1 | 93        |
| 43 | Immune Modulation by Group B Streptococcus Influences Host Susceptibility to Urinary Tract<br>Infection by Uropathogenic Escherichia coli. Infection and Immunity, 2012, 80, 4186-4194.                                                      | 1.0 | 55        |
| 44 | Hydrolysis of Secreted Sialoglycoprotein Immunoglobulin A (IgA) in ex Vivo and Biochemical Models<br>of Bacterial Vaginosis. Journal of Biological Chemistry, 2012, 287, 2079-2089.                                                          | 1.6 | 62        |
| 45 | Expression of sialic acids and other nonulosonic acids in Leptospira. BMC Microbiology, 2012, 12, 161.                                                                                                                                       | 1.3 | 21        |
| 46 | Host sialoglycans and bacterial sialidases: a mucosal perspective. Cellular Microbiology, 2012, 14, 1174-1182.                                                                                                                               | 1.1 | 164       |
| 47 | Genomic and Metabolic Profiling of Nonulosonic Acids in Vibrionaceae Reveal Biochemical Phenotypes<br>of Allelic Divergence in Vibrio vulnificus. Applied and Environmental Microbiology, 2011, 77, 5782-5793.                               | 1.4 | 21        |
| 48 | O-Acetylation of sialic acid on Group B <i>Streptococcus</i> inhibits neutrophil suppression and virulence. Biochemical Journal, 2010, 428, 163-168.                                                                                         | 1.7 | 36        |
| 49 | Innovations in host and microbial sialic acid biosynthesis revealed by phylogenomic prediction of<br>nonulosonic acid structure. Proceedings of the National Academy of Sciences of the United States of<br>America, 2009, 106, 13552-13557. | 3.3 | 135       |
| 50 | Genetic and biochemical modulation of sialic acid O-acetylation on group B Streptococcus:<br>Phenotypic and functional impact. Glycobiology, 2009, 19, 1204-1213.                                                                            | 1.3 | 39        |
| 51 | Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil<br>Siglec-9 and dampen the innate immune response. Blood, 2009, 113, 3333-3336.                                                                | 0.6 | 351       |
| 52 | NeuA Sialic Acid O-Acetylesterase Activity Modulates O-Acetylation of Capsular Polysaccharide in<br>Group B Streptococcus. Journal of Biological Chemistry, 2007, 282, 27562-27571.                                                          | 1.6 | 45        |
| 53 | Group B Streptococcal Capsular Sialic Acids Interact with Siglecs (Immunoglobulin-Like Lectins) on<br>Human Leukocytes. Journal of Bacteriology, 2007, 189, 1231-1237.                                                                       | 1.0 | 152       |
| 54 | The Group B Streptococcal Sialic Acid O-Acetyltransferase Is Encoded by neuD, a Conserved<br>Component of Bacterial Sialic Acid Biosynthetic Gene Clusters. Journal of Biological Chemistry, 2006,<br>281, 11186-11192.                      | 1.6 | 54        |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Discovery and characterization of sialic acid O-acetylation in group B Streptococcus. Proceedings of the United States of America, 2004, 101, 11123-11128.                                    | 3.3 | 145       |
| 56 | Evolutionary Considerations in Studying the Sialome: Sialic Acids and the Host-Pathogen Interface. , 0, , 69-88.                                                                              |     | 2         |
| 57 | Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract. , 0, , 459-502.                                                          |     | 9         |
| 58 | Gardnerella Exposures Alter Bladder Gene Expression and Augment Uropathogenic Escherichia coli<br>Urinary Tract Infection in Mice. Frontiers in Cellular and Infection Microbiology, 0, 12, . | 1.8 | 6         |