Lian-Wang Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5720502/publications.pdf

Version: 2024-02-01

58 1,500 21 35 35 papers citations h-index g-index

61 61 61 2114 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Angioplasty induces epigenomic remodeling in injured arteries. Life Science Alliance, 2022, 5, e202101114.	1.3	6
2	SREBP1 regulates Lgals3 activation in response to cholesterol loading. Molecular Therapy - Nucleic Acids, 2022, 28, 892-909.	2.3	7
3	Recent progress on nanoparticles for targeted aneurysm treatment and imaging. Biomaterials, 2021, 265, 120406.	5.7	15
4	PERK Inhibition Promotes Post-angioplasty Re-endothelialization via Modulating SMC Phenotype Changes. Journal of Surgical Research, 2021, 257, 294-305.	0.8	7
5	A Role for Polo-Like Kinase 4 in Vascular Fibroblast Cell-Type Transition. JACC Basic To Translational Science, 2021, 6, 257-283.	1.9	7
6	A hierarchical and collaborative BRD4/CEBPD partnership governs vascular smooth muscle cell inflammation. Molecular Therapy - Methods and Clinical Development, 2021, 21, 54-66.	1.8	17
7	An adventitial painting modality of local drug delivery to abate intimal hyperplasia. Biomaterials, 2021, 275, 120968.	5.7	7
8	Smad2 inhibition of MET transcription potentiates human vascular smooth muscle cell apoptosis. Atherosclerosis Plus, 2021, 44, 31-42.	0.3	1
9	Biomimetic, ROS-detonable nanoclusters — A multimodal nanoplatform for anti-restenotic therapy. Journal of Controlled Release, 2021, 338, 295-306.	4.8	13
10	TMEM97 ablation aggravates oxidant-induced retinal degeneration. Cellular Signalling, 2021, 86, 110078.	1.7	8
11	BRD2 regulation of sigma-2 receptor upon cholesterol deprivation. Life Science Alliance, 2021, 4, e201900540.	1.3	13
12	miR548ai antagonism attenuates exosome-induced endothelial cell dysfunction. Cell Death Discovery, 2021, 7, 318.	2.0	3
13	Mammalian hybrid pre-autophagosomal structure HyPAS generates autophagosomes. Cell, 2021, 184, 5950-5969.e22.	13.5	54
14	Nullifying epigenetic writer DOT1L attenuates neointimal hyperplasia. Atherosclerosis, 2020, 308, 22-31.	0.4	11
15	Sigma-1 receptor ablation impedes adipocyte-like differentiation of mouse embryonic fibroblasts. Cellular Signalling, 2020, 75, 109732.	1.7	6
16	PERK Inhibition Mitigates Restenosis andÂThrombosis. JACC Basic To Translational Science, 2020, 5, 245-263.	1.9	16
17	BET Epigenetic Reader Proteins in Cardiovascular Transcriptional Programs. Circulation Research, 2020, 126, 1190-1208.	2.0	88
18	Smad3 Regulates Neuropilin 2 Transcription by Binding to its $5\hat{a} \in \mathbb{Z}$ Untranslated Region. Journal of the American Heart Association, 2020, 9, e015487.	1.6	7

#	Article	IF	Citations
19	ALDH1A3 Regulations of Matricellular Proteins Promote Vascular Smooth Muscle Cell Proliferation. IScience, 2019, 19, 872-882.	1.9	22
20	A Human Pluripotent Stem Cell-Based Screen for Smooth Muscle Cell Differentiation and Maturation Identifies Inhibitors of Intimal Hyperplasia. Stem Cell Reports, 2019, 12, 1269-1281.	2.3	23
21	The BD2 domain of BRD4 is a determinant in EndoMT and vein graft neointima formation. Cellular Signalling, 2019, 61, 20-29.	1.7	20
22	SIGMAR1/Sigma-1 receptor ablation impairs autophagosome clearance. Autophagy, 2019, 15, 1539-1557.	4.3	53
23	Mass Spectrometric Imaging Reveals Temporal and Spatial Dynamics of Bioactive Lipids in Arteries Undergoing Restenosis. Journal of Proteome Research, 2019, 18, 1669-1678.	1.8	14
24	Analysis of Combined Transcriptomes Identifies Gene Modules that Differentially Respond to Pathogenic Stimulation of Vascular Smooth Muscle and Endothelial Cells. Scientific Reports, 2018, 8, 395.	1.6	13
25	HDAC6 Regulates the MRTF-A/SRF Axis and Vascular Smooth Muscle Cell Plasticity. JACC Basic To Translational Science, 2018, 3, 782-795.	1.9	30
26	Signaling Mechanisms of Myofibroblastic Activation: Outside-in and Inside-Out. Cellular Physiology and Biochemistry, 2018, 49, 848-868.	1.1	82
27	A paradigm of endothelium-protective and stent-free anti-restenotic therapy using biomimetic nanoclusters. Biomaterials, 2018, 178, 293-301.	5.7	36
28	Restenosis Inhibition and Re-differentiation of $TGF\hat{l}^2/Smad3$ -activated Smooth Muscle Cells by Resveratrol. Scientific Reports, 2017, 7, 41916.	1.6	20
29	Unimolecular Micelle-Based Hybrid System for Perivascular Drug Delivery Produces Long-Term Efficacy for Neointima Attenuation in Rats. Biomacromolecules, 2017, 18, 2205-2213.	2.6	28
30	Peeking into Sigma-1 Receptor Functions Through the Retina. Advances in Experimental Medicine and Biology, 2017, 964, 285-297.	0.8	14
31	Photoreceptor protection via blockade of BET epigenetic readers in a murine model of inherited retinal degeneration. Journal of Neuroinflammation, 2017, 14, 14.	3.1	22
32	Role of the sigma-1 receptor chaperone in rod and cone photoreceptor degenerations in a mouse model of retinitis pigmentosa. Molecular Neurodegeneration, 2017, 12, 68.	4.4	30
33	APEX2-enhanced electron microscopy distinguishes sigma-1 receptor localization in the nucleoplasmic reticulum. Oncotarget, 2017, 8, 51317-51330.	0.8	50
34	Potential independent action of sigma receptor ligands through inhibition of the Kv2.1 channel. Oncotarget, 2017, 8, 59345-59358.	0.8	14
35	Abstract 332: Inhibition of the Enhancer of Zeste Homolog Family Mitigates Intimal Hyperplasia in Rat Carotid Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, .	1.1	2
36	Epigenetic intervention with a BET inhibitor ameliorates acute retinal ganglion cell death in mice. Molecular Vision, 2017, 23, 149-159.	1.1	8

3

#	Article	IF	CITATIONS
37	Local CXCR4 Upregulation in the Injured Arterial Wall Contributes to Intimal Hyperplasia. Stem Cells, 2016, 34, 2744-2757.	1.4	23
38	Periadventitial drug delivery for the prevention of intimal hyperplasia following open surgery. Journal of Controlled Release, 2016, 233, 174-180.	4.8	37
39	Development of sigma-1 ($\ddot{l}f\ 1$) receptor fluorescent ligands as versatile tools to study $\ddot{l}f\ 1$ receptors. European Journal of Medicinal Chemistry, 2016, 108, 577-585.	2.6	11
40	A crosstalk between TGF- \hat{l}^2 /Smad3 and Wnt/ \hat{l}^2 -catenin pathways promotes vascular smooth muscle cell proliferation. Cellular Signalling, 2016, 28, 498-505.	1.7	83
41	BET Bromodomain Blockade Mitigates Intimal Hyperplasia in Rat Carotid Arteries. EBioMedicine, 2015, 2, 1650-1661.	2.7	57
42	The Sigma-2 Receptor and Progesterone Receptor Membrane Component 1 are Different Binding Sites Derived From Independent Genes. EBioMedicine, 2015, 2, 1806-1813.	2.7	84
43	Subcellular Localization of the Sigma-1 Receptor in Retinal Neurons — an Electron Microscopy Study. Scientific Reports, 2015, 5, 10689.	1.6	61
44	A Murine Model of Arterial Restenosis: Technical Aspects of Femoral Wire Injury. Journal of Visualized Experiments, 2015, , .	0.2	12
45	Role of the Sigma-1 receptor in Amyotrophic Lateral Sclerosis (ALS). Journal of Pharmacological Sciences, 2015, 127, 10-16.	1.1	67
46	THE 18 kDa SIGMAâ€⊋ Receptor and PGRMC1 are Derived From Separate Genes. FASEB Journal, 2015, 29, LB511.	0.2	0
47	High-Throughput Screening Identifies Idarubicin as a Preferential Inhibitor of Smooth Muscle versus Endothelial Cell Proliferation. PLoS ONE, 2014, 9, e89349.	1.1	15
48	Halofuginone Stimulates Adaptive Remodeling and Preserves Re-Endothelialization in Balloon-Injured Rat Carotid Arteries. Circulation: Cardiovascular Interventions, 2014, 7, 594-601.	1.4	24
49	A rapamycin-releasing perivascular polymeric sheath produces highly effective inhibition of intimal hyperplasia. Journal of Controlled Release, 2014, 191, 47-53.	4.8	34
50	Periadventitial Application of Rapamycin-Loaded Nanoparticles Produces Sustained Inhibition of Vascular Restenosis. PLoS ONE, 2014, 9, e89227.	1.1	37
51	TGF-β/Smad3 Stimulates Stem Cell/Developmental Gene Expression and Vascular Smooth Muscle Cell De-Differentiation. PLoS ONE, 2014, 9, e93995.	1.1	36
52	Development of Benzophenoneâ€Alkyne Bifunctional Sigma Receptor Ligands. ChemBioChem, 2012, 13, 2277-2289.	1.3	5
53	N-terminal Half of the cGMP Phosphodiesterase \hat{I}^3 -Subunit Contributes to Stabilization of the GTPase-accelerating Protein Complex. Journal of Biological Chemistry, 2011, 286, 15260-15267.	1.6	5
54	Accelerated retinal ganglion cell death in mice deficient in the Sigma-1 receptor. Molecular Vision, 2011, 17, 1034-43.	1.1	57

#	Article	IF	CITATIONS
55	Complementary Interactions of the Rod PDE6 Inhibitory Subunit with the Catalytic Subunits and Transducin. Journal of Biological Chemistry, 2010, 285, 15209-15219.	1.6	8
56	Juxtaposition of the Steroid Binding Domain-like I and II Regions Constitutes a Ligand Binding Site in the $If-1$ Receptor. Journal of Biological Chemistry, 2008, 283, 19646-19656.	1.6	54
57	The Retinal cGMP Phosphodiesterase γ-Subunit — A Chameleon. Current Protein and Peptide Science, 2008, 9, 611-625.	0.7	15
58	Nitric Acid in the Presence of Supported P2O5 On Silica Gel Affords an Efficient and Mild System for Oxidation of Organic Compounds Under Solvent-Free Conditions. Molecular Crystals and Liquid Crystals, 2006, 456, 85-93.	0.4	4