## Il-Kwon Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5720127/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Rational Engineering of Homoserine O-Succinyltransferase from <i>Escherichia coli</i> for Reduced<br>Feedback Inhibition by Methionine. Journal of Agricultural and Food Chemistry, 2022, 70, 1571-1578.                                                         | 5.2 | 8         |
| 2  | Crystal Structure and Functional Characterization of the Bifunctional<br>N-(5′-Phosphoribosyl)anthranilate Isomerase-indole-3-glycerol-phosphate Synthase from<br>Corynebacterium glutamicum. Journal of Agricultural and Food Chemistry, 2021, 69, 12485-12493. | 5.2 | 1         |
| 3  | Development of Metabolically Engineered <i>Corynebacterium glutamicum</i> for Enhanced<br>Production of Cadaverine and Its Use for the Synthesis of Bio-Polyamide 510. ACS Sustainable<br>Chemistry and Engineering, 2020, 8, 129-138.                           | 6.7 | 23        |
| 4  | Biochemical properties and crystal structure of isocitrate lyase from Bacillus cereus ATCC 14579.<br>Biochemical and Biophysical Research Communications, 2020, 533, 1177-1183.                                                                                  | 2.1 | 2         |
| 5  | Structural basis for stereospecificity to d-amino acid of glycine oxidase from Bacillus cereus ATCC 14579. Biochemical and Biophysical Research Communications, 2020, 533, 824-830.                                                                              | 2.1 | 3         |
| 6  | Crystal structure of an acetyl-CoA acetyltransferase from PHB producing bacterium Bacillus cereus ATCC 14579. Biochemical and Biophysical Research Communications, 2020, 533, 442-448.                                                                           | 2.1 | 9         |
| 7  | High-Level Conversion of l-lysine into Cadaverine by Escherichia coli Whole Cell Biocatalyst<br>Expressing Hafnia alvei l-lysine Decarboxylase. Polymers, 2019, 11, 1184.                                                                                        | 4.5 | 21        |
| 8  | Metabolic Engineering of <i>Corynebacterium glutamicum</i> for the High-Level Production of<br>Cadaverine That Can Be Used for the Synthesis of Biopolyamide 510. ACS Sustainable Chemistry and<br>Engineering, 2018, 6, 5296-5305.                              | 6.7 | 83        |
| 9  | Improved reutilization of industrial crude lysine to 1,5-diaminopentane by enzymatic decarboxylation<br>using various detergents and organic solvents. Korean Journal of Chemical Engineering, 2018, 35,<br>1854-1859.                                           | 2.7 | 9         |
| 10 | Crystal Structure and Pyridoxal 5-Phosphate Binding Property of Lysine Decarboxylase from Selenomonas ruminantium. PLoS ONE, 2016, 11, e0166667.                                                                                                                 | 2.5 | 15        |
| 11 | Engineering and systems-level analysis of Saccharomyces cerevisiae for production of<br>3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Microbial Cell Factories, 2016,<br>15, 53.                                                          | 4.0 | 98        |
| 12 | Structural basis for cytokinin production by LOG from Corynebacterium glutamicum. Scientific Reports, 2016, 6, 31390.                                                                                                                                            | 3.3 | 23        |
| 13 | Construction of Synthetic Promoter-Based Expression Cassettes for the Production of Cadaverine in<br>Recombinant Corynebacterium glutamicum. Applied Biochemistry and Biotechnology, 2015, 176,<br>2065-2075.                                                    | 2.9 | 47        |
| 14 | Production of $\hat{l}^2$ -ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae. Microbial Cell Factories, 2015, 14, 84.                                                                                              | 4.0 | 71        |
| 15 | Structural insights into domain movement and cofactor specificity of glutamate dehydrogenase from<br>Corynebacterium glutamicum. Biochemical and Biophysical Research Communications, 2015, 459,<br>387-392.                                                     | 2.1 | 25        |
| 16 | Development of engineered <i>Escherichia coli</i> whole-cell biocatalysts for high-level conversion of <scp>l</scp> -lysine into cadaverine. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 1481-1491.                                          | 3.0 | 35        |
| 17 | Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae. Metabolic Engineering, 2014, 22, 104-109.                                                                                            | 7.0 | 123       |
|    |                                                                                                                                                                                                                                                                  |     |           |

| #  | Article                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Research, 2012, 12, 228-248. | 2.3 | 90        |