
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5720112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Biomonitoring Pilot Study in Workers from a Paints Production Plant Exposed to Pigment-Grade Titanium Dioxide (TiO2). Toxics, 2022, 10, 171.	1.6	7
2	Molecular Aspects of the Interaction with Gram-Negative and Gram-Positive Bacteria of Hydrothermal Carbon Nanoparticles Associated with Bac8c ^{2,5Leu} Antimicrobial Peptide. ACS Omega, 2022, 7, 16402-16413.	1.6	9
3	Biological interactions of ferromagnetic iron oxide–carbon nanohybrids with alveolar epithelial cells. Biomaterials Science, 2022, 10, 3514-3526.	2.6	2
4	Mechanistic Insights into the Role of Iron, Copper, and Carbonaceous Component on the Oxidative Potential of Ultrafine Particulate Matter. Chemical Research in Toxicology, 2021, 34, 767-779.	1.7	15
5	Occupational Exposure to Carbon Nanotubes and Carbon Nanofibres: More Than a Cobweb. Nanomaterials, 2021, 11, 745.	1.9	25
6	Efficacy, biocompatibility and degradability of carbon nanoparticles for photothermal therapy of lung cancer. Nanomedicine, 2021, 16, 689-707.	1.7	5
7	Human flavin-containing monooxygenase 1 and its long-sought hydroperoxyflavin intermediate. Biochemical Pharmacology, 2021, 193, 114763.	2.0	9
8	Biotransformation of Food-Grade and Nanometric TiO2 in the Oral–Gastro–Intestinal Tract: Driving Forces and Effect on the Toxicity toward Intestinal Epithelial Cells. Nanomaterials, 2020, 10, 2132.	1.9	17
9	Identification of physicochemical properties that modulate nanoparticle aggregation in blood. Beilstein Journal of Nanotechnology, 2020, 11, 550-567.	1.5	26
10	Applicability and Limitations in the Characterization of Poly-Dispersed Engineered Nanomaterials in Cell Media by Dynamic Light Scattering (DLS). Materials, 2019, 12, 3833.	1.3	16
11	Pro- and anti-oxidant properties of near-infrared (NIR) light responsive carbon nanoparticles. Free Radical Biology and Medicine, 2019, 134, 165-176.	1.3	18
12	Indoor illumination: A possible pitfall in toxicological assessment of photo-active nanomaterials. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 350, 23-31.	2.0	3
13	Insight into ultrasound-mediated reactive oxygen species generation by various metal-porphyrin complexes. Free Radical Biology and Medicine, 2018, 121, 190-201.	1.3	60
14	A compact diode laser based all-fiber delivery system for PDT+PTT with integrated temperature sensing capabilities. , 2017, , .		0
15	Surface reactivity and in vitro toxicity on human bronchial epithelial cells (BEAS-2B) of nanomaterials intermediates of the production of titania-based composites. Toxicology in Vitro, 2016, 34, 171-178.	1.1	10
16	Multi-walled carbon nanotubes directly induce epithelial-mesenchymal transition in human bronchial epithelial cells via the TGF-β-mediated Akt/GSK-3β/SNAIL-1 signalling pathway. Particle and Fibre Toxicology, 2015, 13, 27.	2.8	65
17	Nanosized TiO2 is internalized by dorsal root ganglion cells and causes damage via apoptosis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1309-1319.	1.7	16
18	Identifying contact-mediated, localized toxic effects of MWCNT aggregates on epithelial monolayers: a single-cell monitoring toxicity assay. Nanotoxicology, 2015, 9, 230-241.	1.6	28

#	Article	IF	CITATIONS
19	Possible Chemical Source of Discrepancy between in Vitro and in Vivo Tests in Nanotoxicology Caused by Strong Adsorption of Buffer Components. Chemical Research in Toxicology, 2015, 28, 87-91.	1.7	22
20	Fibrinogen enhances the inflammatory response of alveolar macrophages to TiO2, SiO2and carbon nanomaterials. Nanotoxicology, 2014, 10, 1-9.	1.6	23
21	Hydroxyl density affects the interaction of fibrinogen with silica nanoparticles at physiological concentration. Journal of Colloid and Interface Science, 2014, 419, 86-94.	5.0	22
22	Inhibition of the ROS-mediated cytotoxicity and genotoxicity of nano-TiO2 toward human keratinocyte cells by iron doping. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	19
23	Ultrasound-activated decafluoropentane-cored and chitosan-shelled nanodroplets for oxygen delivery to hypoxic cutaneous tissues. RSC Advances, 2014, 4, 38433-38441.	1.7	39
24	Graphenic Nanoparticles from Combustion Sources Scavenge Hydroxyl Radicals Depending Upon Their Structure. BioNanoScience, 2013, 3, 112-122.	1.5	10
25	Ion release and tarnishing behavior of Au and Pd based amorphous alloys in artificial sweat. Corrosion Science, 2013, 77, 135-142.	3.0	6
26	Screening of Nanoparticle Embryotoxicity Using Embryonic Stem Cells. Methods in Molecular Biology, 2013, 1058, 49-60.	0.4	11
27	Towards predicting the lung fibrogenic activity of nanomaterials: experimental validation of an in vitro fibroblast proliferation assay. Particle and Fibre Toxicology, 2013, 10, 52.	2.8	69
28	Crystalline Phase Modulates the Potency of Nanometric TiO ₂ to Adhere to and Perturb the Stratum Corneum of Porcine Skin under Indoor Light. Chemical Research in Toxicology, 2013, 26, 1579-1590.	1.7	29
29	Singlet oxygen plays a key role in the toxicity and DNA damage caused by nanometric TiO2 in human keratinocytes. Nanoscale, 2013, 5, 6567.	2.8	55
30	Inhibition of catecholamine secretion by iron-rich and iron-deprived multiwalled carbon nanotubes in chromaffin cells. NeuroToxicology, 2013, 39, 84-94.	1.4	7
31	Interaction of fibrinogen and albumin with titanium dioxide nanoparticles of different crystalline phases. Journal of Physics: Conference Series, 2013, 429, 012014.	0.3	28
32	Predictive tests to evaluate oxidative potential of engineered nanomaterials. Journal of Physics: Conference Series, 2013, 429, 012024.	0.3	1
33	Altered excitability of cultured chromaffin cells following exposure to multi-walled carbon nanotubes. Nanotoxicology, 2012, 6, 47-60.	1.6	17
34	Inactivation of TiO2 nano-powders for the preparation of photo-stable sunscreens via carbon-based surface modification. Journal of Materials Chemistry, 2012, 22, 19105.	6.7	27
35	Distinctive Toxicity of TiO ₂ Rutile/Anatase Mixed Phase Nanoparticles on Caco-2 Cells. Chemical Research in Toxicology, 2012, 25, 646-655.	1.7	162
36	Physicochemical Determinants in the Cellular Responses to Nanostructured Amorphous Silicas. Toxicological Sciences, 2012, 128, 158-170.	1.4	48

#	Article	IF	CITATIONS
37	Thickness of Multiwalled Carbon Nanotubes Affects Their Lung Toxicity. Chemical Research in Toxicology, 2012, 25, 74-82.	1.7	105
38	Surface Iron Inhibits Quartz-Induced Cytotoxic and Inflammatory Responses in Alveolar Macrophages. Chemical Research in Toxicology, 2011, 24, 99-110.	1.7	33
39	Low Doses of Pristine and Oxidized Single-Wall Carbon Nanotubes Affect Mammalian Embryonic Development. ACS Nano, 2011, 5, 4624-4633.	7.3	201
40	Multiple aspects of the interaction of biomacromolecules with inorganic surfaces. Advanced Drug Delivery Reviews, 2011, 63, 1186-1209.	6.6	148
41	Effect of chemical composition and state of the surface on the toxic response to high aspect ratio nanomaterials. Nanomedicine, 2011, 6, 899-920.	1.7	81
42	An Integrated Approach to the Study of the Interaction between Proteins and Nanoparticles. Langmuir, 2010, 26, 8336-8346.	1.6	110
43	Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology, 2010, 4, 347-363.	1.6	261
44	Decreasing the oxidative potential of TiO2 nanoparticles through modification of the surface with carbon: a new strategy for the production of safe UV filters. Chemical Communications, 2010, 46, 8478.	2.2	42
45	Does Vitreous Silica Contradict the Toxicity of the Crystalline Silica Paradigm?. Chemical Research in Toxicology, 2010, 23, 620-629.	1.7	80
46	Sintered Indium-Tin-Oxide (ITO) Particles: A New Pneumotoxic Entity. Toxicological Sciences, 2009, 108, 472-481.	1.4	98
47	Nonâ€UVâ€Induced Radical Reactions at the Surface of TiO ₂ Nanoparticles That May Trigger Toxic Responses. Chemistry - A European Journal, 2009, 15, 4614-4621.	1.7	165
48	Specific effects of single antioxidants in the lipid peroxidation caused by nano-titania used in sunscreen lotions. Journal of Photochemistry and Photobiology B: Biology, 2009, 96, 130-135.	1.7	21
49	Formation of a Vitreous Phase at the Surface of Some Commercial Diatomaceous Earth Prevents the Onset of Oxidative Stress Effects. Chemical Research in Toxicology, 2009, 22, 136-145.	1.7	13
50	Role of particle coating in controlling skin damage photoinduced by titania nanoparticles. Free Radical Research, 2009, 43, 312-322.	1.5	71
51	Structural Defects Play a Major Role in the Acute Lung Toxicity of Multiwall Carbon Nanotubes: Toxicological Aspects. Chemical Research in Toxicology, 2008, 21, 1698-1705.	1.7	246
52	Structural Defects Play a Major Role in the Acute Lung Toxicity of Multiwall Carbon Nanotubes: Physicochemical Aspects. Chemical Research in Toxicology, 2008, 21, 1690-1697.	1.7	210
53	The oxidation of glutathione by cobalt/tungsten carbide contributes to hard metal-induced oxidative stress. Free Radical Research, 2008, 42, 437-745.	1.5	39
54	Quartz Inhibits Glucose 6-Phosphate Dehydrogenase in Murine Alveolar Macrophages. Chemical Research in Toxicology, 2008, 21, 888-894.	1.7	27

#	Article	IF	CITATIONS
55	Toxic Potential of Mineral Dusts. Elements, 2007, 3, 407-414.	0.5	131
56	Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: Role of the specific surface area and of surface methylation of the particles. Toxicology and Applied Pharmacology, 2007, 222, 141-151.	1.3	310
57	Reactivity of carbon nanotubes: Free radical generation or scavenging activity?. Free Radical Biology and Medicine, 2006, 40, 1227-1233.	1.3	279
58	Surface Reactivity, Cytotoxic, and Morphological Transforming Effects of Diatomaceous Earth Products in Syrian Hamster Embryo Cells. Toxicological Sciences, 2006, 91, 510-520.	1.4	25
59	Variability of biological effects of silicas: Different degrees of activation of the fifth component of complement by amorphous silicas. Toxicology and Applied Pharmacology, 2005, 208, 68-77.	1.3	14
60	Inorganic Materials and Living Organisms: Surface Modifications and Fungal Responses to Various Asbestos Forms. Chemistry - A European Journal, 2005, 11, 5611-5618.	1.7	34
61	In vitro genotoxicity assessment of commercial quartz flours in comparison to standard DQ12 quartz. International Journal of Hygiene and Environmental Health, 2004, 207, 105-113.	2.1	44
62	Relationship between the state of the surface of four commercial quartz flours and their biological activity in vitro and in vivo. International Journal of Hygiene and Environmental Health, 2004, 207, 89-104.	2.1	73
63	Reaction of cysteine and glutathione (CSH) at the freshly fractured quartz surface: a possible role in silica-related diseases?. Free Radical Biology and Medicine, 2003, 35, 752-762.	1.3	35
64	Long and short fiber amosite asbestos alters at a different extent the redox metabolism in human lung epithelial cells. Toxicology and Applied Pharmacology, 2003, 193, 106-115.	1.3	39
65	Soil Fungal Hyphae Bind and Attack Asbestos Fibers. Angewandte Chemie, 2003, 115, 229-232.	1.6	7
66	Soil Fungal Hyphae Bind and Attack Asbestos Fibers. Angewandte Chemie - International Edition, 2003, 42, 219-222.	7.2	45
67	Ascorbic Acid Modifies the Surface of Asbestos:  Possible Implications in the Molecular Mechanisms of Toxicity. Chemical Research in Toxicology, 2003, 16, 328-335.	1.7	31
68	Surface reactivity of volcanic ash from the eruption of Soufrière Hills volcano, Montserrat, West Indies with implications for health hazards. Environmental Research, 2003, 93, 202-215.	3.7	90
69	Crystalline silica incubated in ascorbic acid acquires a higher cytotoxic potential. Toxicology and Industrial Health, 2002, 18, 249-255.	0.6	11
70	Crocidolite asbestos inhibits pentose phosphate oxidative pathway and glucose 6-phosphate dehydrogenase activity in human lung epithelial cells. Free Radical Biology and Medicine, 2002, 32, 938-949.	1.3	59
71	Cleavage of the Fifth Component of Human Complement and Release of a Split Product with C5a-like Activity by Crystalline Silica through Free Radical Generation and Kallikrein Activation. Toxicology and Applied Pharmacology, 2002, 179, 129-136.	1.3	21
72	Spontaneous polymerisation on amphibole asbestos: relevance to asbestos removal. Chemical Communications, 2001, , 2182-2183.	2.2	6

#	Article	IF	CITATIONS
73	Iron inhibits the nitric oxide synthesis elicited by asbestos in murine macrophages. Free Radical Biology and Medicine, 2001, 31, 412-417.	1.3	26
74	Free radical generation in the toxicity of inhaled mineral particles: the role of iron speciation at the surface of asbestos and silica. Redox Report, 2001, 6, 235-241.	1.4	76
75	Variability of Biological Responses to Silicas: Effect of Origin, Crystallinity, and State of Surface on Generation of Reactive Oxygen Species and Morphological Transformation of Mammalian Cells. Journal of Environmental Pathology, Toxicology and Oncology, 2001, 20, 14.	0.6	43
76	The Role of Mechanochemistry in the Pulmonary Toxicity Caused by Particulate Minerals. Journal of Materials Synthesis and Processing, 2000, 8, 145-153.	0.3	18
77	Possible Role of Ascorbic Acid in the Oxidative Damage Induced by Inhaled Crystalline Silica Particles. Chemical Research in Toxicology, 2000, 13, 971-975.	1.7	57
78	Pure-Silica Zeolites (Porosils) as Model Solids for the Evaluation of the Physicochemical Features Determining Silica Toxicity to Macrophages. Chemical Research in Toxicology, 2000, 13, 489-500.	1.7	55
79	Syntheses and Structureâ^'Activity Relationships of Novel Nor-seco Taxoids. Journal of Organic Chemistry, 1998, 63, 1637-1645.	1.7	26
80	Novel Base-Catalyzed Rearrangement of the Taxane Skeleton1. Journal of Natural Products, 1997, 60, 464-466.	1.5	12
81	Effects of yew alkaloids and related compounds on guinea-pig isolated perfused heart and papillary muscle. Life Sciences, 1996, 58, 845-854.	2.0	36
82	Synthesis of azetidine-type taxanes. Tetrahedron Letters, 1996, 37, 3203-3206.	0.7	32
83	Syntheses and Structure—Activity Relationships of New Taxoids. ACS Symposium Series, 1994, , 262-275.	0.5	5
84	Synthesis and biological activity of 14-hydroxydocetaxel. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 1571-1576.	1.0	30
85	Synthesis and Structure-Activity Relationships of Novel Nor-Seco Analogs of Taxol and Taxotere. Journal of Organic Chemistry, 1994, 59, 515-517.	1.7	25
86	Structure-Activity Relationships of New Taxoids Derived from 14.betaHydroxy-10-deacetylbaccatin III. Journal of Medicinal Chemistry, 1994, 37, 1408-1410.	2.9	34
87	Pseudoalkaloid taxanes from Taxus baccata. Phytochemistry, 1993, 33, 1521-1523.	1.4	38