
Sang-Oh Yoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5719934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphoproteomic Analysis Identifies Grb10 as an mTORC1 Substrate That Negatively Regulates Insulin Signaling. Science, 2011, 332, 1322-1326.	12.6	772
2	Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17414-17419.	7.1	716
3	Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription. Journal of Cell Biology, 2005, 168, 29-33.	5.2	360
4	SKAR Links Pre-mRNA Splicing to mTOR/S6K1-Mediated Enhanced Translation Efficiency of Spliced mRNAs. Cell, 2008, 133, 303-313.	28.9	271
5	ERK2 but Not ERK1 Induces Epithelial-to-Mesenchymal Transformation via DEF Motif-Dependent Signaling Events. Molecular Cell, 2010, 38, 114-127.	9.7	263
6	Glucose Addiction of TSC Null Cells Is Caused by Failed mTORC1-Dependent Balancing of Metabolic Demand with Supply. Molecular Cell, 2010, 38, 487-499.	9.7	236
7	Roles of Matrix Metalloproteinases in Tumor Metastasis and Angiogenesis. BMB Reports, 2003, 36, 128-137.	2.4	225
8	The mTORC1/S6K1 Pathway Regulates Glutamine Metabolism through the eIF4B-Dependent Control of c-Myc Translation. Current Biology, 2014, 24, 2274-2280.	3.9	213
9	Hypoxia Stimulates Carcinoma Invasion by Stabilizing Microtubules and Promoting the Rab11 Trafficking of the α6β4 Integrin. Cancer Research, 2005, 65, 2761-2769.	0.9	203
10	Inhibitory Effect of Selenite on Invasion of HT1080 Tumor Cells. Journal of Biological Chemistry, 2001, 276, 20085-20092.	3.4	155
11	Sustained Production of H2O2Activates Pro-matrix Metalloproteinase-2 through Receptor Tyrosine Kinases/Phosphatidylinositol 3-Kinase/NF-κB Pathway. Journal of Biological Chemistry, 2002, 277, 30271-30282.	3.4	152
12	Glycogen synthase kinase (GSK)-3 promotes p70 ribosomal protein S6 kinase (p70S6K) activity and cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1204-13.	7.1	144
13	Isoginkgetin inhibits tumor cell invasion by regulating phosphatidylinositol 3-kinase/Akt–dependent matrix metalloproteinase-9 expression. Molecular Cancer Therapeutics, 2006, 5, 2666-2675.	4.1	100
14	Dose effect of oxidative stress on signal transduction in aging. Mechanisms of Ageing and Development, 2002, 123, 1597-1604.	4.6	93
15	ERK2 Mediates Metabolic Stress Response to Regulate Cell Fate. Molecular Cell, 2015, 59, 382-398.	9.7	84
16	p90 Ribosomal S6 Kinase and p70 Ribosomal S6 Kinase Link Phosphorylation of the Eukaryotic Chaperonin Containing TCP-1 to Growth Factor, Insulin, and Nutrient Signaling. Journal of Biological Chemistry, 2009, 284, 14939-14948.	3.4	81
17	Se-Methylselenocysteine induces apoptosis mediated by reactive oxygen species in HL-60 cells. Free Radical Biology and Medicine, 2001, 31, 479-489.	2.9	80
18	Ran-Binding Protein 3 Phosphorylation Links the Ras and PI3-Kinase Pathways to Nucleocytoplasmic Transport, Molecular Cell, 2008, 29, 362-375.	9.7	75

#	Article	IF	CITATIONS
19	A Novel Mechanism for Integrin-Mediated Ras Activation in Breast Carcinoma Cells: The α6β4 Integrin Regulates ErbB2 Translation and Transactivates Epidermal Growth Factor Receptor/ErbB2 Signaling. Cancer Research, 2006, 66, 2732-2739.	0.9	69
20	ERK2 regulates epithelial-to-mesenchymal plasticity through DOCK10-dependent Rac1/FoxO1 activation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2967-2976.	7.1	61
21	The Met Receptor and α6β4 Integrin Can Function Independently to Promote Carcinoma Invasion. Journal of Biological Chemistry, 2004, 279, 32287-32293.	3.4	52
22	RSK Regulates PFK-2 Activity to Promote Metabolic Rewiring in Melanoma. Cancer Research, 2018, 78, 2191-2204.	0.9	47
23	Pro-MMP-2 activation by the PPARÎ ³ agonist, ciglitazone, induces cell invasion through the generation of ROS and the activation of ERK. FEBS Letters, 2007, 581, 3303-3310.	2.8	44
24	Casein Kinase 1ïµ Promotes Cell Proliferation by Regulating mRNA Translation. Cancer Research, 2014, 74, 201-211.	0.9	43
25	Ras Stimulation of E2F Activity and a Consequent E2F Regulation of Integrin α6β4 Promote the Invasion of Breast Carcinoma Cells. Cancer Research, 2006, 66, 6288-6295.	0.9	32
26	Cell proliferation induced by reactive oxygen species is mediated via mitogen-activated protein kinase in Chinese hamster lung fibroblast (V79) cells. Molecules and Cells, 2003, 15, 94-101.	2.6	30
27	Rapamycin Resistance: mTORC1 Substrates Hold Some of the Answers. Current Biology, 2013, 23, R880-R883.	3.9	28
28	mTORC1-Driven Tumor Cells Are Highly Sensitive to Therapeutic Targeting by Antagonists of Oxidative Stress. Cancer Research, 2016, 76, 4816-4827.	0.9	23
29	Transcriptional Repression of Bim by a Novel YY1-RelA Complex Is Essential for the Survival and Growth of Multiple Myeloma. PLoS ONE, 2013, 8, e66121.	2.5	22
30	Glycogen synthase kinase (GSK)-3 and mammalian target of rapamycin complex 1 (mTORC1) cooperate to regulate protein S6 kinase 1 (S6K1). Cell Cycle, 2012, 11, 1053-1054.	2.6	10
31	Histone deacetylases, HDAC1 and HSIR2, act as a negative regulator of ageing through p53 in human gingival fibroblast. Mechanisms of Ageing and Development, 2004, 125, 351-357.	4.6	6
32	Selenite Inhibits Apoptosis via Activation of the PI3â€K/Akt Pathway. Annals of the New York Academy of Sciences, 2002, 973, 221-223.	3.8	5
33	The PIKK-AKT connection in the DNA damage response. Science Signaling, 2022, 15, eabm6211.	3.6	2
34	The primitive growth factor NME7AB induces mitochondrially active naÃ ⁻ ve-like pluripotent stem cells. Biochemistry and Biophysics Reports, 2019, 20, 100656.	1.3	1
35	Metabolic switching in pluripotent stem cells reorganizes energy metabolism and subcellular organelles. Experimental Cell Research, 2019, 379, 55-64.	2.6	1
36	Editorial Note to: Glucose Addiction of TSC Null Cells Is Caused by Failed mTORC1-Dependent Balancing of Metabolic Demand with Supply. Molecular Cell, 2021, 81, 3031.	9.7	0