Navid Rabiee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5719915/publications.pdf

Version: 2024-02-01

199 papers 32,309 citations

24978 57 h-index 164 g-index

208 all docs 208
docs citations

208 times ranked 31247 citing authors

#	Article	IF	CITATIONS
1	Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, The, 2020, 396, 1204-1222.	6.3	7,664
2	Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. Journal of the American College of Cardiology, 2020, 76, 2982-3021.	1.2	4,468
3	Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, The, 2020, 396, 1223-1249.	6.3	3,928
4	Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017. JAMA Oncology, 2019, 5, 1749.	3.4	1,691
5	The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet Gastroenterology and Hepatology, 2020, 5, 17-30.	3.7	1,200
6	Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet, The, 2020, 396, 1160-1203.	6.3	890
7	The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet Gastroenterology and Hepatology, 2020, 5, 245-266.	3.7	823
8	Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019. JAMA Oncology, 2022, 8, 420.	3.4	719
9	Global, Regional, and National Levels and Trends in Burden of Oral Conditions from 1990 to 2017: A Systematic Analysis for the Global Burden of Disease 2017 Study. Journal of Dental Research, 2020, 99, 362-373.	2.5	645
10	The global, regional, and national burden of stomach cancer in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease study 2017. The Lancet Gastroenterology and Hepatology, 2020, 5, 42-54.	3.7	390
11	The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet Gastroenterology and Hepatology, 2019, 4, 934-947.	3.7	372
12	Hearing loss prevalence and years lived with disability, 1990–2019: findings from the Global Burden of Disease Study 2019. Lancet, The, 2021, 397, 996-1009.	6.3	358
13	Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. Lancet HIV,the, 2019, 6, e831-e859.	2.1	341
14	The global burden of non-typhoidal salmonella invasive disease: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infectious Diseases, The, 2019, 19, 1312-1324.	4.6	338
15	Five insights from the Global Burden of Disease Study 2019. Lancet, The, 2020, 396, 1135-1159.	6.3	335
16	Point-of-care microfluidic devices for pathogen detection. Biosensors and Bioelectronics, 2018, 117, 112-128.	5.3	292
17	Past, present, and future of global health financing: a review of development assistance, government, out-of-pocket, and other private spending on health for 195 countries, 1995–2050. Lancet, The, 2019, 393, 2233-2260.	6.3	283
18	Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. The Lancet Healthy Longevity, 2021, 2, e580-e592.	2.0	277

#	Article	IF	CITATIONS
19	The global, regional, and national burden of colorectal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet Gastroenterology and Hepatology, 2019, 4, 913-933.	3.7	259
20	Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomaterialia, 2019, 92, 1-18.	4.1	255
21	The global, regional, and national burden of oesophageal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet Gastroenterology and Hepatology, 2020, 5, 582-597.	3.7	241
22	Global, regional, and national progress towards Sustainable Development Goal 3.2 for neonatal and child health: all-cause and cause-specific mortality findings from the Global Burden of Disease Study 2019. Lancet, The, 2021, 398, 870-905.	6.3	229
23	The global burden of childhood and adolescent cancer in 2017: an analysis of the Global Burden of Disease Study 2017. Lancet Oncology, The, 2019, 20, 1211-1225.	5.1	199
24	Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. International Journal of Nanomedicine, 2021, Volume 16, 1681-1706.	3.3	168
25	Mapping 123 million neonatal, infant and child deaths between 2000 and 2017. Nature, 2019, 574, 353-358.	13.7	161
26	Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials, 2020, 232, 119707.	5.7	138
27	Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today, 2020, 34, 100914.	6.2	125
28	Antimicrobial Ionic Liquidâ€Based Materials for Biomedical Applications. Advanced Functional Materials, 2021, 31, 2104148.	7.8	116
29	The burden of unintentional drowning: global, regional and national estimates of mortality from the Global Burden of Disease 2017 Study. Injury Prevention, 2020, 26, i83-i95.	1.2	109
30	Point-of-Use Rapid Detection of SARS-CoV-2: Nanotechnology-Enabled Solutions for the COVID-19 Pandemic. International Journal of Molecular Sciences, 2020, 21, 5126.	1.8	105
31	Global injury morbidity and mortality from 1990 to 2017: results from the Global Burden of Disease Study 2017. Injury Prevention, 2020, 26, i96-i114.	1.2	103
32	Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work?. Biotechnology Advances, 2018, 36, 968-985.	6.0	95
33	Epidemiology of injuries from fire, heat and hot substances: global, regional and national morbidity and mortality estimates from the Global Burden of Disease 2017 study. Injury Prevention, 2020, 26, i36-i45.	1.2	93
34	Measuring routine childhood vaccination coverage in 204 countries and territories, 1980–2019: a systematic analysis for the Global Burden of Disease Study 2020, Release 1. Lancet, The, 2021, 398, 503-521.	6.3	93
35	Mapping geographical inequalities in access to drinking water and sanitation facilities in low-income and middle-income countries, 2000–17. The Lancet Global Health, 2020, 8, e1162-e1185.	2.9	91
36	Measuring the availability of human resources for health and its relationship to universal health coverage for 204 countries and territories from 1990 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, The, 2022, 399, 2129-2154.	6.3	91

#	Article	IF	CITATIONS
37	Health sector spending and spending on HIV/AIDS, tuberculosis, and malaria, and development assistance for health: progress towards Sustainable Development Goal 3. Lancet, The, 2020, 396, 693-724.	6.3	87
38	Global, regional, and national burden of respiratory tract cancers and associated risk factors from 1990 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Respiratory Medicine,the, 2021, 9, 1030-1049.	5.2	86
39	Smart drug delivery: Capping strategies for mesoporous silica nanoparticles. Microporous and Mesoporous Materials, 2020, 299, 110115.	2.2	85
40	<p>Biodegradable Nanopolymers in Cardiac Tissue Engineering: From Concept Towards Nanomedicine</p> . International Journal of Nanomedicine, 2020, Volume 15, 4205-4224.	3.3	80
41	Polymer-Coated NH ₂ -UiO-66 for the Codelivery of DOX/pCRISPR. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 10796-10811.	4.0	80
42	<p>Biosynthesis of Copper Oxide Nanoparticles with Potential Biomedical Applications</p> . International Journal of Nanomedicine, 2020, Volume 15, 3983-3999.	3.3	79
43	Natural Polymers Decorated MOF-MXene Nanocarriers for Co-delivery of Doxorubicin/pCRISPR. ACS Applied Bio Materials, 2021, 4, 5106-5121.	2.3	78
44	<p>Burgeoning Polymer Nano Blends for Improved Controlled Drug Release: A Review</p> . International Journal of Nanomedicine, 2020, Volume 15, 4363-4392.	3.3	76
45	A review of accelerated wound healing approaches: biomaterial- assisted tissue remodeling. Journal of Materials Science: Materials in Medicine, 2019, 30, 120.	1.7	74
46	Rosmarinus officinalis directed palladium nanoparticle synthesis: Investigation of potential anti-bacterial, anti-fungal and Mizoroki-Heck catalytic activities. Advanced Powder Technology, 2020, 31, 1402-1411.	2.0	74
47	Diatoms with Invaluable Applications in Nanotechnology, Biotechnology, and Biomedicine: Recent Advances. ACS Biomaterials Science and Engineering, 2021, 7, 3053-3068.	2.6	74
48	Crosslinked-polyvinyl alcohol-carboxymethyl cellulose/ZnO nanocomposite fibrous mats containing erythromycin (PVA-CMC/ZnO-EM): Fabrication, characterization and in-vitro release and anti-bacterial properties. International Journal of Biological Macromolecules, 2019, 141, 1137-1146.	3.6	72
49	Mapping geographical inequalities in childhood diarrhoeal morbidity and mortality in low-income and middle-income countries, 2000–17: analysis for the Global Burden of Disease Study 2017. Lancet, The, 2020, 395, 1779-1801.	6.3	72
50	Quantum dots for photocatalysis: synthesis and environmental applications. Green Chemistry, 2021, 23, 4931-4954.	4.6	72
51	Mapping routine measles vaccination in low- and middle-income countries. Nature, 2021, 589, 415-419.	13.7	71
52	Advances in tannic acid-incorporated biomaterials: Infection treatment, regenerative medicine, cancer therapy, and biosensing. Chemical Engineering Journal, 2022, 432, 134146.	6.6	71
53	The global, regional, and national burden of gastro-oesophageal reflux disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet Gastroenterology and Hepatology, 2020, 5, 561-581.	3.7	69
54	An environmentally friendly wound dressing based on a self-healing, extensible and compressible antibacterial hydrogel. Green Chemistry, 2021, 23, 1312-1329.	4.6	69

#	Article	IF	CITATIONS
55	Epidemiology of facial fractures: incidence, prevalence and years lived with disability estimates from the Global Burden of Disease 2017 study. Injury Prevention, 2020, 26, i27-i35.	1.2	67
56	Green metal-organic frameworks (MOFs) for biomedical applications. Microporous and Mesoporous Materials, 2022, 335, 111670.	2.2	65
57	Folic Acid-Adorned Curcumin-Loaded Iron Oxide Nanoparticles for Cervical Cancer. ACS Applied Bio Materials, 2022, 5, 1305-1318.	2.3	65
58	Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer's Disease. Advanced Therapeutics, 2021, 4, 2000076.	1.6	61
59	Optical assays based on colloidal inorganic nanoparticles. Analyst, The, 2018, 143, 3249-3283.	1.7	58
60	Silver and Gold Nanoparticles for Antimicrobial Purposes against Multi-Drug Resistance Bacteria. Materials, 2022, 15, 1799.	1.3	58
61	Turning Toxic Nanomaterials into a Safe and Bioactive Nanocarrier for Co-delivery of DOX/pCRISPR. ACS Applied Bio Materials, 2021, 4, 5336-5351.	2.3	57
62	Early diagnosis of disease using microbead array technology: A review. Analytica Chimica Acta, 2018, 1032, 1-17.	2.6	55
63	Carbosilane dendrimers: Drug and gene delivery applications. Journal of Drug Delivery Science and Technology, 2020, 59, 101879.	1.4	52
64	Global trends of hand and wrist trauma: a systematic analysis of fracture and digit amputation using the Global Burden of Disease 2017 Study. Injury Prevention, 2020, 26, i115-i124.	1.2	51
65	Nanomaterials for photothermal and photodynamic cancer therapy. Applied Physics Reviews, 2022, 9, .	5.5	50
66	Effects of strontium ions with potential antibacterial activity on in vivo bone regeneration. Scientific Reports, 2021, 11, 8745.	1.6	49
67	Core–Shell Nanophotocatalysts: Review of Materials and Applications. ACS Applied Nano Materials, 2022, 5, 55-86.	2.4	49
68	Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017. Nature Medicine, 2020, 26, 750-759.	15.2	47
69	Metal-Organic Frameworks (MOFs)-Based Nanomaterials for Drug Delivery. Materials, 2021, 14, 3652.	1.3	47
70	Long non-coding RNAs and exosomal lncRNAs: Potential functions in lung cancer progression, drug resistance and tumor microenvironment remodeling. Biomedicine and Pharmacotherapy, 2022, 150, 112963.	2.5	47
71	Green CoNi2S4/porphyrin decorated carbon-based nanocomposites for genetic materials detection. Journal of Bioresources and Bioproducts, 2021, 6, 215-222.	11.8	46
72	(Nano)platforms in bladder cancer therapy: Challenges and opportunities. Bioengineering and Translational Medicine, 2023, 8, .	3.9	46

#	Article	IF	Citations
73	Nanotechnological Approaches in Prostate Cancer Therapy: Integration of engineering and biology. Nano Today, 2022, 45, 101532.	6.2	46
74	Carrageenans for tissue engineering and regenerative medicine applications: A review. Carbohydrate Polymers, 2022, 281, 119045.	5.1	45
75	Estimating global injuries morbidity and mortality: methods and data used in the Global Burden of Disease 2017 study. Injury Prevention, 2020, 26, i125-i153.	1.2	44
76	Metal–Organic Frameworks (MOFs) for Cancer Therapy. Materials, 2021, 14, 7277.	1.3	44
77	Multifunctional 3D Hierarchical Bioactive Green Carbon-Based Nanocomposites. ACS Sustainable Chemistry and Engineering, 2021, 9, 8706-8720.	3.2	43
78	Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification. Chemosphere, 2022, 290, 133363.	4.2	43
79	Three-dimensional graphene foam as a conductive scaffold for cardiac tissue engineering. Journal of Biomaterials Applications, 2019, 34, 74-85.	1.2	41
80	COVID-19 and picotechnology: Potential opportunities. Medical Hypotheses, 2020, 144, 109917.	0.8	41
81	Crystalline polysaccharides: A review. Carbohydrate Polymers, 2022, 275, 118624.	5.1	41
82	Highly antifouling polymer-nanoparticle-nanoparticle/polymer hybrid membranes. Science of the Total Environment, 2022, 810, 152228.	3.9	41
83	Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: stimuli-responsive carriers, co-delivery and suppressing resistance. Expert Opinion on Drug Delivery, 2022, 19, 355-382.	2.4	41
84	Selenium Nanomaterials to Combat Antimicrobial Resistance. Molecules, 2021, 26, 3611.	1.7	40
85	Bioactive Materials: A Comprehensive Review on Interactions with Biological Microenvironment Based on the Immune Response. Journal of Bionic Engineering, 2019, 16, 563-581.	2.7	39
86	Metal-organic frameworks (MOF) based heat transfer: A comprehensive review. Chemical Engineering Journal, 2022, 449, 137700.	6.6	39
87	Green synthesis of CuO- and Cu ₂ O-NPs in assistance with high-gravity: The flowering of nanobiotechnology. Nanotechnology, 2020, 31, 425101.	1.3	38
88	Highly stretchable, selfâ€adhesive, and selfâ€healable double network hydrogel based on alginate/polyacrylamide with tunable mechanical properties. Journal of Polymer Science, 2020, 58, 2062-2073.	2.0	37
89	Green Synthesis of ZnO NPs via <i>Salvia hispanica</i> : Evaluation of Potential Antioxidant, Antibacterial, Mammalian Cell Viability, H1N1 Influenza Virus Inhibition and Photocatalytic Activities. Journal of Biomedical Nanotechnology, 2020, 16, 456-466.	0.5	37
90	Long noncoding RNAs (IncRNAs) in pancreatic cancer progression. Drug Discovery Today, 2022, 27, 2181-2198.	3.2	36

#	Article	IF	Citations
91	Multiplexed microarrays based on optically encoded microbeads. Biomedical Microdevices, 2018, 20, 66.	1.4	34
92	Green porous benzamide-like nanomembranes for hazardous cations detection, separation, and concentration adjustment. Journal of Hazardous Materials, 2022, 423, 127130.	6.5	34
93	Transforming growth factor-beta (TGF- \hat{I}^2) in prostate cancer: A dual function mediator?. International Journal of Biological Macromolecules, 2022, 206, 435-452.	3.6	34
94	Prevascularized Micro-/Nano-Sized Spheroid/Bead Aggregates for Vascular Tissue Engineering. Nano-Micro Letters, 2021, 13, 182.	14.4	33
95	Reduced graphene oxide: osteogenic potential for bone tissue engineering. IET Nanobiotechnology, 2019, 13, 720-725.	1.9	31
96	ZnAl nano layered double hydroxides for dual functional CRISPR/Cas9 delivery and enhanced green fluorescence protein biosensor. Scientific Reports, 2020, 10, 20672.	1.6	31
97	Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications. Journal of Medicinal Chemistry, 2022, 65, 2-36.	2.9	31
98	Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARS-CoV-2 spike antigen. Science of the Total Environment, 2022, 825, 153902.	3.9	31
99	High-gravity-assisted green synthesis of palladium nanoparticles: the flowering of nanomedicine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 30, 102297.	1.7	30
100	Nanotechnology-assisted microfluidic systems: from bench to bedside. Nanomedicine, 2021, 16, 237-258.	1.7	30
101	Improved green biosynthesis of chitosan decorated Ag- and Co3O4-nanoparticles: A relationship between surface morphology, photocatalytic and biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102331.	1.7	29
102	Green chemistry and coronavirus. Sustainable Chemistry and Pharmacy, 2021, 21, 100415.	1.6	29
103	Electrically conductive carbonâ€based (bio)â€nanomaterials for cardiac tissue engineering. Bioengineering and Translational Medicine, 2023, 8, .	3.9	29
104	The flowering of Mechanically Interlocked Molecules: Novel approaches to the synthesis of rotaxanes and catenanes. Coordination Chemistry Reviews, 2020, 423, 213484.	9.5	28
105	<p>Aptamer Hybrid Nanocomplexes as Targeting Components for Antibiotic/Gene Delivery Systems and Diagnostics: A Review</p> . International Journal of Nanomedicine, 2020, Volume 15, 4237-4256.	3.3	28
106	Bio-multifunctional noncovalent porphyrin functionalized carbon-based nanocomposite. Scientific Reports, 2021, 11, 6604.	1.6	28
107	Non-coding RNAs and macrophage interaction in tumor progression. Critical Reviews in Oncology/Hematology, 2022, 173, 103680.	2.0	28
108	CaZnO-based nanoghosts for the detection of ssDNA, pCRISPR and recombinant SARS-CoV-2 spike antigen and targeted delivery of doxorubicin. Chemosphere, 2022, 306, 135578.	4.2	28

#	Article	IF	Citations
109	Investigating the structural chemistry of organotin(IV) compounds: recent advances. Reviews in Inorganic Chemistry, 2019, 39, 13-45.	1.8	27
110	The colorful world of carotenoids: a profound insight on therapeutics and recent trends in nano delivery systems. Critical Reviews in Food Science and Nutrition, 2022, 62, 3658-3697.	5.4	27
111	Zn-rich (GaN) _{1â^'x} (ZnO) _x : a biomedical friend?. New Journal of Chemistry, 2021, 45, 4077-4089.	1.4	26
112	Green products from herbal medicine wastes by subcritical water treatment. Journal of Hazardous Materials, 2022, 424, 127294.	6.5	26
113	Green Polymer Nanocomposites for Skin Tissue Engineering. ACS Applied Bio Materials, 2022, 5, 2107-2121.	2.3	26
114	High gravity-assisted green synthesis of ZnO nanoparticles via Allium ursinum: Conjoining nanochemistry to neuroscience. Nano Express, 2020, 1, 020025.	1.2	25
115	Cell-Seeded Biomaterial Scaffolds: The Urgent Need for Unanswered Accelerated Angiogenesis. International Journal of Nanomedicine, 2022, Volume 17, 1035-1068.	3.3	25
116	Microfluidic devices with gold thin film channels for chemical and biomedical applications: a review. Biomedical Microdevices, 2019, 21, 93.	1.4	24
117	Synthesis, characterization and mechanistic study of nano chitosan tetrazole as a novel and promising platform for CRISPR delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 116-126.	1.8	24
118	Mapping inequalities in exclusive breastfeeding in low- and middle-income countries, 2000–2018. Nature Human Behaviour, 2021, 5, 1027-1045.	6.2	24
119	Photoactive polymers-decorated Cu-Al layered double hydroxide hexagonal architectures: A potential non-viral vector for photothermal therapy and co-delivery of DOX/pCRISPR. Chemical Engineering Journal, 2022, 448, 137747.	6.6	24
120	Design, preparation, and characterization of silk fibroin/carboxymethyl cellulose wound dressing for skin tissue regeneration applications. Polymer Engineering and Science, 2022, 62, 2741-2749.	1.5	24
121	Recent Advancements in aptamer-bioconjugates: Sharpening Stones for breast and prostate cancers targeting. Journal of Drug Delivery Science and Technology, 2019, 53, 101146.	1.4	23
122	Mathematical modeling of drug release from biodegradable polymeric microneedles. Bio-Design and Manufacturing, 2019, 2, 96-107.	3.9	23
123	Mapping geographical inequalities in oral rehydration therapy coverage in low-income and middle-income countries, 2000–17. The Lancet Global Health, 2020, 8, e1038-e1060.	2.9	23
124	Bioresorbable composite polymeric materials for tissue engineering applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 0, , 1-15.	1.8	23
125	High-Gravity-Assisted Green Synthesis of NiO-NPs Anchored on the Surface of Biodegradable Nanobeads with Potential Biomedical Applications. Journal of Biomedical Nanotechnology, 2020, 16, 520-530.	0.5	23
126	Biomedical engineering of polysaccharide-based tissue adhesives: Recent advances and future direction. Carbohydrate Polymers, 2022, 295, 119787.	5.1	23

#	Article	IF	CITATIONS
127	Insight into the Self-Insertion of a Protein Inside the Boron Nitride Nanotube. ACS Omega, 2020, 5, 32051-32058.	1.6	21
128	Development of a novel carboxamide-based off–on switch fluorescence sensor: Hg ²⁺ , Zn ²⁺ and Cd ²⁺ . New Journal of Chemistry, 2020, 44, 11841-11852.	1.4	21
129	Boron nitride-palladium nanostructured catalyst: efficient reduction of nitrobenzene derivatives in water. Nano Express, 2020, 1, 030012.	1.2	21
130	Porphyrin Molecules Decorated on Metal-Organic Frameworks for Multi-Functional Biomedical Applications. Biomolecules, 2021, 11, 1714.	1.8	21
131	Photoluminescent carbon quantum dot/poly-l-Lysine core-shell nanoparticles: A novel candidate for gene delivery. Journal of Drug Delivery Science and Technology, 2021, 61, 102118.	1.4	20
132	Boron Nitride Nanotube as an Antimicrobial Peptide Carrier: A Theoretical Insight. International Journal of Nanomedicine, 2021, Volume 16, 1837-1847.	3.3	20
133	Theoretical Encapsulation of Fluorouracil (5-FU) Anti-Cancer Chemotherapy Drug into Carbon Nanotubes (CNT) and Boron Nitride Nanotubes (BNNT). Molecules, 2021, 26, 4920.	1.7	20
134	Controlled Gene Delivery Systems: Nanomaterials and Chemical Approaches. Journal of Biomedical Nanotechnology, 2020, 16, 553-582.	0.5	20
135	Novel Pt-Ag3PO4/CdS/Chitosan Nanocomposite with Enhanced Photocatalytic and Biological Activities. Nanomaterials, 2020, 10, 2320.	1.9	19
136	<p>The Pimpled Gold Nanosphere: A Superior Candidate for Plasmonic Photothermal Therapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 2903-2920.	3.3	19
137	Mission impossible for cellular internalization: When porphyrin alliance with UiO-66-NH2 MOF gives the cell lines a ride. Journal of Hazardous Materials, 2022, 436, 129259.	6.5	19
138	Calcium-based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery. Journal of Nanostructure in Chemistry, 2022, 12, 919-932.	5.3	18
139	Quantum dots against <scp>SARSâ€CoV</scp> â€2: diagnostic and therapeutic potentials. Journal of Chemical Technology and Biotechnology, 2022, 97, 1640-1654.	1.6	18
140	Synthesis of green benzamide-decorated UiO-66-NH2 for biomedical applications. Chemosphere, 2022, 299, 134359.	4.2	18
141	Emerging Phospholipid Nanobiomaterials for Biomedical Applications to Lab-on-a-Chip, Drug Delivery, and Cellular Engineering. ACS Applied Bio Materials, 2021, 4, 8110-8128.	2.3	17
142	Multifunctional green synthesized Cu–Al layered double hydroxide (LDH) nanoparticles: anti-cancer and antibacterial activities. Scientific Reports, 2022, 12, .	1.6	15
143	MIL-125-based nanocarrier decorated with Palladium complex for targeted drug delivery. Scientific Reports, 2022, 12, .	1.6	15
144	Penetration Depth in Nanoparticles Incorporated Radiofrequency Hyperthermia into the Tissue: Comprehensive Study with Histology and Pathology Observations. IET Nanobiotechnology, 2019, 13, 634-639.	1.9	13

#	Article	IF	CITATIONS
145	Histidineâ€enhanced gene delivery systems: The state of the art. Journal of Gene Medicine, 2022, 24, e3415.	1.4	13
146	Green carbon-based nanocompositeÂbiomaterials through the lens of microscopes. Emergent Materials, 2022, 5, 665-671.	3.2	12
147	Early Diagnosis of Multiple Sclerosis Based on Optical and Electrochemical Biosensors: Comprehensive Perspective. Current Analytical Chemistry, 2020, 16, 557-569.	0.6	12
148	Green composites in bone tissue engineering. Emergent Materials, 2022, 5, 603-620.	3.2	11
149	Dynamics of Antimicrobial Peptide Encapsulation in Carbon Nanotubes: The Role of Hydroxylation. International Journal of Nanomedicine, 2022, Volume 17, 125-136.	3.3	11
150	Multifunctional Tetracycline-Loaded Silica-Coated Core–Shell Magnetic Nanoparticles: Antibacterial, Antibiofilm, and Cytotoxic Activities. ACS Applied Bio Materials, 2022, 5, 1731-1743.	2.3	11
151	Biofunctionalized microbead arrays for early diagnosis of breast cancer. Biomedical Physics and Engineering Express, 2018, 4, 065028.	0.6	10
152	Catalytic and antibacterial properties of 3â€dentate carboxamide Pd/Pt complexes obtained via a benign route. Applied Organometallic Chemistry, 2020, 34, e5531.	1.7	9
153	α-Helical Antimicrobial Peptide Encapsulation and Release from Boron Nitride Nanotubes: A Computational Study. International Journal of Nanomedicine, 2021, Volume 16, 4277-4288.	3.3	9
154	Development of a nano biosensor for anti-gliadin detection for Celiac disease based on suspension microarrays. Biomedical Physics and Engineering Express, 2020, 6, 055015.	0.6	9
155	Application of Aptamer-based Hybrid Molecules in Early Diagnosis and Treatment of Diabetes Mellitus: From the Concepts Towards the Future. Current Diabetes Reviews, 2019, 15, 309-313.	0.6	9
156	MEL zeolite nanosheet membranes for water purification: insights from molecular dynamics simulations. Journal of Nanostructure in Chemistry, 2022, 12, 291-305.	5. 3	8
157	Cure Kinetics of Samarium-Doped Fe3O4/Epoxy Nanocomposites. Journal of Composites Science, 2022, 6, 29.	1.4	7
158	Composite of methyl polysiloxane and avocado biochar as adsorbent for removal of ciprofloxacin from waters. Environmental Science and Pollution Research, 2022, 29, 74823-74840.	2.7	7
159	Natural Corrosion Inhibitors. Synthesis Lectures on Mechanical Engineering, 2019, 3, 1-96.	0.1	6
160	Adsorption onto zeolites: molecular perspective. Chemical Papers, 2021, 75, 6217-6239.	1.0	6
161	Microfluidic devices and drug delivery systems. , 2021, , 153-186.		6
162	A Perspective to the Correlation Between Brain Insulin Resistance and Alzheimer: Medicinal Chemistry Approach. Current Diabetes Reviews, 2019, 15, 255-258.	0.6	5

#	Article	IF	Citations
163	Rapid Electrochemical Ultra-Sensitive Evaluation and Determination of Daptomycin Based on Continuous Cyclic Voltammetry. Current Pharmaceutical Analysis, 2020, 16, 181-185.	0.3	5
164	Carbon-based nanomaterials., 0,,.		4
165	The association of clinicopathological characterizations of colorectal cancer with membrane-bound mucins genes and LncRNAs. Pathology Research and Practice, 2022, 233, 153883.	1.0	4
166	A Novel Graphene-Based Nanosensor for Detection of Ethanol Gas. Iranian Journal of Science and Technology, Transaction A: Science, 2019, 43, 2227-2237.	0.7	3
167	An overview of microfluidic devices., 2021,, 1-22.		3
168	Microfluidics: Organ-on-a-chip., 2021,, 99-115.		3
169	Microfluidic devices for pathogen detection. , 2021, , 117-151.		3
170	Microfluidic devices for gene delivery systems. , 2021, , 187-208.		3
171	Global Burden of Breast Cancer and Attributable Risk Factors in 195 Countries and Territories, from 1990 to 2017: Results from the Global Burden of Disease Study 2017. SSRN Electronic Journal, 0, , .	0.4	3
172	Antimicrobial Ionic Liquidâ€Based Materials for Biomedical Applications (Adv. Funct. Mater. 42/2021). Advanced Functional Materials, 2021, 31, 2170312.	7.8	3
173	Gold-based nanoplatform for a rapid lateral flow immunochromatographic test assay for gluten detection. BMC Biomedical Engineering, 2022, 4, .	1.7	3
174	Innovative Educational Technology Programs in Low- and Middle-Income Countries. Childhood Education, 2017, 93, 364-367.	0.1	2
175	Electrocardiographic Changes in Children With Acute Opioid Poisoning. Pediatric Emergency Care, 2019, Publish Ahead of Print, .	0.5	2
176	Microfluidic devices: Synthetic approaches. , 2021, , 23-36.		2
177	Burden of Transport-Related Injuries in the Eastern Mediterranean Region: A Systematic Analysis for the Global Burden of Disease Study 2017. Archives of Iranian Medicine, 2021, 24, 512-525.	0.2	2
178	Stimuli-responsive polymers: introduction., 0,,.		2
179	Biocompatibility and Neuroprotective Potential of Encapsulated S-Allyl-L-Cysteine into PCL-based Nanocarrier. Drug Delivery Letters, 2018, 8, 242-247.	0.2	2
180	Time dependent of epigenetic effect of disulfiram on tumor suppressor gene of RASSF1A in Hela cancer cell line. Journal of Basic Research in Medical Sciences, 2018, 5, 8-13.	0.1	2

#	Article	IF	CITATIONS
181	Detection of Dopamine Receptors Using Nanoscale Dendrimer for Potential Application in Targeted Delivery and Whole-Body Imaging: Synthesis and <i>In Vivo</i> Organ Distribution. ACS Applied Bio Materials, 2022, 5, 1744-1755.	2.3	2
182	Magnetic Stimuli-Responsive Cobalt Ferrite Nanoparticle as Theranostic agents for Targeted Delivery. Current Nanomaterials, 2019, 3, 160-167.	0.2	1
183	Microarray technologies. , 2021, , 77-98.		1
184	Targeted delivery of nucleic acids using microfluidic systems. , 2021, , 289-318.		1
185	Metallodrugs: Medicinal chemistry investigation. Frontiers in Drug Chemistry and Clinical Research, 2018, $1,.$	0.6	1
186	Aptamers and pathogen-based carriers. , 0, , .		1
187	Micro- nano vehicles: Self-propelling approach toward the Future. Frontiers in Drug Chemistry and Clinical Research, $2018,1,.$	0.6	1
188	Drug delivery approaches. , 0, , .		0
189	The concept of the insulin intestinal uptake mechanism: Associated with polymeric nanoparticles. Frontiers in Drug Chemistry and Clinical Research, 2018, 1, .	0.6	O
190	Polymeric and hyper-branched nanoparticles and dendrimers. , 0, , .		0
191	Advances in nature-inspired nanomaterials. , 0, , .		O
192	Stimulus-Responsive Polymeric Nanogels as Smart Drug Delivery Systems. SSRN Electronic Journal, 0, ,	0.4	0
193	Stimuli-responsive polymers: recent advances. , 0, , .		O
194	Stimuli-responsive polymers: biomedical concepts. , 0, , .		0
195	Stimuli-responsive polymers: synthesis approach. , 0, , .		O
196	Stimuli-responsive polymers: future perspectives. , 0, , .		0
197	Primary Solitary Hydatid Cyst of Brain in a 12-Year-Old Boy: A Case Report. Iranian Journal of Parasitology, 0, , .	0.6	0
198	Protein and Peptide-based Microarrays for Multiplex Detection. , 2020, , .		0

#	Article	IF	CITATIONS
199	Comparison of engineered cartilage based on <scp>BMSCs</scp> and chondrocytes seeded on <scp>PVA</scp> ― <scp>PPU</scp> scaffold in a sheep model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, , .	1.6	0