Antonello Petrella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5719757/publications.pdf

Version: 2024-02-01

58 papers

1,848 citations

201385 27 h-index 41 g-index

58 all docs 58 docs citations

58 times ranked 2737 citing authors

#	Article	IF	Citations
1	Label-Free Quantitative Proteomics to Explore the Action Mechanism of the Pharmaceutical-Grade Triticum vulgare Extract in Speeding Up Keratinocyte Healing. Molecules, 2022, 27, 1108.	1.7	5
2	Helicobacter pylori Pathogen-Associated Molecular Patterns: Friends or Foes?. International Journal of Molecular Sciences, 2022, 23, 3531.	1.8	8
3	The combination of mesoglycan and VEGF promotes skin wound repair by enhancing the activation of endothelial cells and fibroblasts and their cross-talk. Scientific Reports, 2022, 12, .	1.6	15
4	Mesoglycan exerts its fibrinolytic effect through the activation of annexin A2. Journal of Cellular Physiology, 2021, 236, 4926-4943.	2.0	11
5	TFF1 Induces Aggregation and Reduces Motility of Helicobacter pylori. International Journal of Molecular Sciences, 2021, 22, 1851.	1.8	3
6	Mesoglycan connects Syndecanâ€4 and VEGFR2 through Annexin A1 and formyl peptide receptors to promote angiogenesis <i>inÂvitro</i> . FEBS Journal, 2021, 288, 6428-6446.	2.2	11
7	The promising pro-healing role of the association of mesoglycan and lactoferrin on skin lesions. European Journal of Pharmaceutical Sciences, 2021, 163, 105886.	1.9	10
8	The Procoagulant Activity of Emoxilane \hat{A}^{\otimes} : A New Appealing Therapeutic Use in Epistaxis of the Combination of Sodium Hyaluronate, Silver Salt, \hat{I}_{\pm} -tocopherol and D-panthenol. Life, 2021, 11, 992.	1.1	4
9	Novel insights on the molecular mechanism of action of the anti-angiogenic pyrazolyl-urea GeGe-3 by functional proteomics. Bioorganic Chemistry, 2021, 115, 105168.	2.0	10
10	Synthesis, functional proteomics and biological evaluation of new 5-pyrazolyl ureas as potential anti-angiogenic compounds. European Journal of Medicinal Chemistry, 2021, 226, 113872.	2.6	8
11	ANXA1 Contained in EVs Regulates Macrophage Polarization in Tumor Microenvironment and Promotes Pancreatic Cancer Progression and Metastasis. International Journal of Molecular Sciences, 2021, 22, 11018.	1.8	22
12	The Pyrazolyl-Urea Gege3 Inhibits the Activity of ANXA1 in the Angiogenesis Induced by the Pancreatic Cancer Derived EVs. Biomolecules, 2021, 11, 1758.	1.8	6
13	In situ gelling alginate-pectin blend particles loaded with Ac2-26: A new weapon to improve wound care armamentarium. Carbohydrate Polymers, 2020, 227, 115305.	5.1	42
14	Mesoglycan induces the secretion of microvesicles by keratinocytes able to activate human fibroblasts and endothelial cells: A novel mechanism in skin wound healing. European Journal of Pharmacology, 2020, 869, 172894.	1.7	27
15	Supercritical impregnation of mesoglycan into calcium alginate aerogel for wound healing. Journal of Supercritical Fluids, 2020, 157, 104711.	1.6	40
16	Low copper availability limits Helicobacter infection in mice. FEBS Journal, 2020, 287, 2948-2960.	2.2	5
17	Heparan sulfate binds the extracellular Annexin A1 and blocks its effects on pancreatic cancer cells. Biochemical Pharmacology, 2020, 182, 114252.	2.0	14
18	Annexin A1 Released in Extracellular Vesicles by Pancreatic Cancer Cells Activates Components of the Tumor Microenvironment, through Interaction with the Formyl-Peptide Receptors. Cells, 2020, 9, 2719.	1.8	27

#	Article	IF	Citations
19	Annexin A1 Contained in Extracellular Vesicles Promotes the Activation of Keratinocytes by Mesoglycan Effects: An Autocrine Loop Through FPRs. Cells, 2019, 8, 753.	1.8	32
20	Mesoglycan induces keratinocyte activation by triggering syndecanâ€4 pathway and the formation of the annexin A1/S100A11 complex. Journal of Cellular Physiology, 2019, 234, 20174-20192.	2.0	22
21	PCL/Mesoglycan Devices Obtained by Supercritical Foaming and Impregnation. Pharmaceutics, 2019, 11, 631.	2.0	20
22	TRAF2 and FKBP51 as possible markers for identification of suitable melanoma tumors for tumor necrosis factor- \hat{l}_{\pm} inhibition. Melanoma Research, 2019, 29, 145-150.	0.6	4
23	Effects of Prisma \hat{A}^{\otimes} Skin dermal regeneration device containing glycosaminoglycans on human keratinocytes and fibroblasts. Cell Adhesion and Migration, 2018, 12, 1-16.	1.1	27
24	Annexin A1 May Induce Pancreatic Cancer Progression as a Key Player of Extracellular Vesicles Effects as Evidenced in the In Vitro MIA PaCa-2 Model System. International Journal of Molecular Sciences, 2018, 19, 3878.	1.8	52
25	miR-196a Is Able to Restore the Aggressive Phenotype of Annexin A1 Knock-Out in Pancreatic Cancer Cells by CRISPR/Cas9 Genome Editing. International Journal of Molecular Sciences, 2018, 19, 1967.	1.8	27
26	TFF1 Promotes EMT-Like Changes through an Auto-Induction Mechanism. International Journal of Molecular Sciences, 2018, 19, 2018.	1.8	13
27	Hypoxia regulates ANXA1 expression to support prostate cancer cell invasion and aggressiveness. Cell Adhesion and Migration, $2017, 11, 247-260$.	1.1	42
28	The Pharmaceutical Device Prisma® Skin Promotes in Vitro Angiogenesis through Endothelial to Mesenchymal Transition during Skin Wound Healing. International Journal of Molecular Sciences, 2017, 18, 1614.	1.8	32
29	Annexin A1 contributes to pancreatic cancer cell phenotype, behaviour and metastatic potential independently of Formyl Peptide Receptor pathway. Scientific Reports, 2016, 6, 29660.	1.6	57
30	Evaluation of in situ injectable hydrogels as controlled release device for ANXA1 derived peptide in wound healing. Carbohydrate Polymers, 2015, 115, 629-635.	5.1	41
31	Annexin A1 is involved in the acquisition and maintenance of a stem cell-like/aggressive phenotype in prostate cancer cells with acquired resistance to zoledronic acid. Oncotarget, 2015, 6, 25074-25092.	0.8	53
32	Role of intracellular and extracellular annexin A1 in migration and invasion of human pancreatic carcinoma cells. BMC Cancer, 2014, 14, 961.	1.1	79
33	Cryptogenic stroke and diabetes: a probable link between silent atrial fibrillation episodes and cerebrovascular disease. Expert Review of Cardiovascular Therapy, 2014, 12, 323-329.	0.6	4
34	Tight Glycemic Control May Increase Regenerative Potential of Myocardium during Acute Infarction. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 933-942.	1.8	61
35	Dipeptidyl Peptidase 4 Inhibition May Facilitate Healing of Chronic Foot Ulcers in Patients with Type 2 Diabetes. Experimental Diabetes Research, 2012, 2012, 1-11.	3.8	64
36	Annexin A1 N-Terminal Derived Peptide Ac2-26 Stimulates Fibroblast Migration in High Glucose Conditions. PLoS ONE, 2012, 7, e45639.	1.1	33

#	Article	IF	Citations
37	Annexin A1: Novel roles in skeletal muscle biology. Journal of Cellular Physiology, 2012, 227, 3007-3015.	2.0	44
38	Annexin A1 Induces Skeletal Muscle Cell Migration Acting through Formyl Peptide Receptors. PLoS ONE, 2012, 7, e48246.	1.1	47
39	Oxime Amides as a Novel Zinc Binding Group in Histone Deacetylase Inhibitors: Synthesis, Biological Activity, and Computational Evaluation. Journal of Medicinal Chemistry, 2011, 54, 2165-2182.	2.9	45
40	Histone Deacetylase Inhibitors in the Treatment of Hematological Malignancies. Mini-Reviews in Medicinal Chemistry, 2011, 11, 519-527.	1.1	21
41	Role of Annexin A1 in mouse myoblast cell differentiation. Journal of Cellular Physiology, 2010, 224, 757-765.	2.0	46
42	Histone deacetylase inhibitor FR235222 sensitizes human prostate adenocarcinoma cells to apoptosis through up-regulation of Annexin A1. Cancer Letters, 2010, 295, 85-91.	3.2	29
43	LGP1, A histone deacetylase inhibitor analogue of FR235222, sensitizes promyelocytic leukaemia U937 cells to TRAIL-mediated apoptosis. Anticancer Research, 2010, 30, 887-94.	0.5	14
44	<i>R</i> â€roscovitine sensitizes anaplastic thyroid carcinoma cells to TRAILâ€induced apoptosis <i>via</i> regulation of IKK/NFâ€PB pathway. International Journal of Cancer, 2009, 124, 2728-2736.	2.3	24
45	Clâ€iBâ€MECA enhances TRAILâ€induced apoptosis via the modulation of NFâ€îºB signalling pathway in thyroid cancer cells. Journal of Cellular Physiology, 2009, 221, 378-386.	2.0	40
46	Molecular modelling studies, synthesis and biological activity of a series of novel bisnaphthalimides and their development as new DNA topoisomerase II inhibitors. Bioorganic and Medicinal Chemistry, 2009, 17, 13-24.	1.4	111
47	Effects of FR235222, a novel HDAC inhibitor, in proliferation and apoptosis of human leukaemia cell lines: Role of Annexin A1. European Journal of Cancer, 2008, 44, 740-749.	1.3	49
48	Cl-IB-MECA inhibits human thyroid cancer cell proliferation independently of A3 adenosine receptor activation. Cancer Biology and Therapy, 2008, 7, 278-284.	1.5	49
49	Synthesis and antiproliferative properties of N3/8-disubstituted 3,8-diazabicyclo[3.2.1]octane analogues of 3,8-bis[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl-piperazine. European Journal of Medicinal Chemistry, 2007, 42, 293-306.	2.6	30
50	Dexamethasone inhibits TRAIL-induced apoptosis of thyroid cancer cells via Bcl-xL induction. European Journal of Cancer, 2006, 42, 3287-3293.	1.3	45
51	Annexin-1 downregulation in thyroid cancer correlates to the degree of tumour differentiation. Cancer Biology and Therapy, 2006, 5, 643-647.	1.5	52
52	NF-κB protects Behçet's disease T cells against CD95-induced apoptosis up-regulating antiapoptotic proteins. Arthritis and Rheumatism, 2005, 52, 2179-2191.	6.7	59
53	Activation of NF-κB/Rel transcription factors in human primary peripheral blood mononuclear cells by interleukin 7. Biological Chemistry, 2004, 385, 415-417.	1.2	4
54	Rapamycin inhibits doxorubicin-induced NF-κB/Rel nuclear activity and enhances the apoptosis of melanoma cells. European Journal of Cancer, 2004, 40, 2829-2836.	1.3	130

Antonello Petrella

#	Article	lF	CITATION
55	BAG3 Protein Regulates Cell Survival in Childhood Acute Lymphoblastic Leukemia Cells. Cancer Biology and Therapy, 2003, 2, 508-510.	1.5	65
56	Analysis of peripheral blood normal and malignant cells with the novel murine monoclonal antibody UN2. Immunology Letters, 1994, 42, 55-62.	1.1	1
57	Regulation of NF-κB Nuclear Activity in Peripheral Blood Mononuclear Cells: Role of CD28 Antigen. Cellular Immunology, 1994, 156, 371-377.	1.4	7
58	Defect of Interleukin-2 Production and T Cell Proliferation in Atopic Patients: Restoring Ability of the CD28-Mediated Activation Pathway. Cellular Immunology, 1993, 148, 455-463.	1.4	5