Derek S Sarovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5719203/publications.pdf Version: 2024-02-01

DEDER S SADOVICH

#	Article	IF	CITATIONS
1	Within-Host Evolution of Burkholderia pseudomallei over a Twelve-Year Chronic Carriage Infection. MBio, 2013, 4, .	4.1	121
2	Variable Virulence Factors in Burkholderia pseudomallei (Melioidosis) Associated with Human Disease. PLoS ONE, 2014, 9, e91682.	2.5	99
3	SPANDx: a genomics pipeline for comparative analysis of large haploid whole genome re-sequencing datasets. BMC Research Notes, 2014, 7, 618.	1.4	94
4	Development of a Prototype Lateral Flow Immunoassay (LFI) for the Rapid Diagnosis of Melioidosis. PLoS Neglected Tropical Diseases, 2014, 8, e2727.	3.0	93
5	Molecular Epidemiologic Investigation of an Anthrax Outbreak among Heroin Users, Europe. Emerging Infectious Diseases, 2012, 18, 1307-1313.	4.3	77
6	Characterization of Ceftazidime Resistance Mechanisms in Clinical Isolates of Burkholderia pseudomallei from Australia. PLoS ONE, 2012, 7, e30789.	2.5	75
7	Burkholderia pseudomallei Isolates from Sarawak, Malaysian Borneo, Are Predominantly Susceptible to Aminoglycosides and Macrolides. Antimicrobial Agents and Chemotherapy, 2014, 58, 162-166.	3.2	72
8	Within-Host Evolution of <i>Burkholderia pseudomallei</i> during Chronic Infection of Seven Australasian Cystic Fibrosis Patients. MBio, 2017, 8, .	4.1	70
9	Development of ceftazidime resistance in an acute Burkholderia pseudomallei infection. Infection and Drug Resistance, 2012, 5, 129.	2.7	60
10	Phylogenomic Analysis Reveals an Asian Origin for African Burkholderia pseudomallei and Further Supports Melioidosis Endemicity in Africa. MSphere, 2016, 1, .	2.9	57
11	Haemophilus influenzae: using comparative genomics to accurately identify a highly recombinogenic human pathogen. BMC Genomics, 2015, 16, 641.	2.8	53
12	Within-Host Evolution of Burkholderia pseudomallei in Four Cases of Acute Melioidosis. PLoS Pathogens, 2010, 6, e1000725.	4.7	50
13	Evolution and Global Transmission of a Multidrug-Resistant, Community-Associated Methicillin-Resistant Staphylococcus aureus Lineage from the Indian Subcontinent. MBio, 2019, 10, .	4.1	50
14	Development and Validation of Burkholderia pseudomallei-Specific Real-Time PCR Assays for Clinical, Environmental or Forensic Detection Applications. PLoS ONE, 2012, 7, e37723.	2.5	50
15	The Effects of Signal Erosion and Core Genome Reduction on the Identification of Diagnostic Markers. MBio, 2016, 7, .	4.1	49
16	Mechanisms of Resistance to Folate Pathway Inhibitors in <i>Burkholderia pseudomallei</i> : Deviation from the Norm. MBio, 2017, 8, .	4.1	47
17	Unprecedented Melioidosis Cases in Northern Australia Caused by an Asian Burkholderia pseudomallei Strain Identified by Using Large-Scale Comparative Genomics. Applied and Environmental Microbiology, 2016, 82, 954-963.	3.1	46
18	Distribution of Burkholderia pseudomallei in Northern Australia, a Land of Diversity. Applied and Environmental Microbiology, 2014, 80, 3463-3468.	3.1	45

#	Article	IF	CITATIONS
19	Comparison of TaqMan PCR Assays for Detection of the Melioidosis Agent Burkholderia pseudomallei in Clinical Specimens. Journal of Clinical Microbiology, 2012, 50, 2059-2062.	3.9	44
20	Whole-Genome Sequencing Confirms that Burkholderia pseudomallei Multilocus Sequence Types Common to Both Cambodia and Australia Are Due to Homoplasy. Journal of Clinical Microbiology, 2015, 53, 323-326.	3.9	44
21	Recurrent Melioidosis in the Darwin Prospective Melioidosis Study: Improving Therapies Mean that Relapse Cases Are Now Rare. Journal of Clinical Microbiology, 2014, 52, 650-653.	3.9	43
22	Chlamydia trachomatis from Australian Aboriginal people with trachoma are polyphyletic composed of multiple distinctive lineages. Nature Communications, 2016, 7, 10688.	12.8	42
23	Use of Whole-Genome Sequencing to Link <i>Burkholderia pseudomallei</i> from Air Sampling to Mediastinal Melioidosis, Australia. Emerging Infectious Diseases, 2015, 21, 2052-2054.	4.3	41
24	Genomic epidemiology of severe community-onset Acinetobacter baumannii infection. Microbial Genomics, 2019, 5, .	2.0	40
25	Whole-Genome Sequences of 80 Environmental and Clinical Isolates of Burkholderia pseudomallei. Genome Announcements, 2015, 3, .	0.8	38
26	Comparative Genomics of Burkholderia singularis sp. nov., a Low G+C Content, Free-Living Bacterium That Defies Taxonomic Dissection of the Genus Burkholderia. Frontiers in Microbiology, 2017, 8, 1679.	3.5	36
27	Tracing Melioidosis Back to the Source: Using Whole-Genome Sequencing To Investigate an Outbreak Originating from a Contaminated Domestic Water Supply. Journal of Clinical Microbiology, 2015, 53, 1144-1148.	3.9	35
28	Simultaneous identification of <i>Haemophilus influenzae</i> and <i>Haemophilus haemolyticus</i> using real-time PCR. Future Microbiology, 2017, 12, 585-593.	2.0	35
29	Raising the Stakes: Loss of Efflux Pump Regulation Decreases Meropenem Susceptibility in Burkholderia pseudomallei. Clinical Infectious Diseases, 2018, 67, 243-250.	5.8	34
30	Absence of an Important Vaccine and Diagnostic Target in Carriage- and Disease-Related Nontypeable Haemophilus influenzae. Vaccine Journal, 2014, 21, 250-252.	3.1	33
31	Whole-Genome Sequencing of Burkholderia pseudomallei Isolates from an Unusual Melioidosis Case Identifies a Polyclonal Infection with the Same Multilocus Sequence Type. Journal of Clinical Microbiology, 2015, 53, 282-286.	3.9	32
32	Dominance of multidrug resistant CC271 clones in macrolide-resistant streptococcus pneumoniae in Arizona. BMC Microbiology, 2012, 12, 12.	3.3	31
33	Endemic Melioidosis in Residents of Desert Region after Atypically Intense Rainfall in Central Australia, 2011. Emerging Infectious Diseases, 2015, 21, 1038-1040.	4.3	30
34	Suspected cases of intracontinental Burkholderia pseudomallei sequence type homoplasy resolved using whole-genome sequencing. Microbial Genomics, 2017, 3, .	2.0	30
35	Transcriptomic analysis of longitudinal Burkholderia pseudomallei infecting the cystic fibrosis lung. Microbial Genomics, 2018, 4, .	2.0	30
36	Comparative Genomics and Antimicrobial Resistance Profiling of <i>Elizabethkingia</i> Isolates Reveal Nosocomial Transmission and <i>In Vitro</i> Susceptibility to Fluoroquinolones, Tetracyclines, and Trimethoprim-Sulfamethoxazole. Journal of Clinical Microbiology, 2020, 58, .	3.9	27

#	Article	IF	CITATIONS
37	Single-molecule sequencing reveals the molecular basis of multidrug-resistance in ST772 methicillin-resistant Staphylococcus aureus. BMC Genomics, 2015, 16, 388.	2.8	24
38	Plasmacytoid dendritic cells appear inactive during sub-microscopic Plasmodium falciparum blood-stage infection, yet retain their ability to respond to TLR stimulation. Scientific Reports, 2017, 7, 2596.	3.3	24
39	Loss of Methyltransferase Function and Increased Efflux Activity Leads to Doxycycline Resistance in Burkholderia pseudomallei. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	23
40	Whole-genome sequencing of a quarter-century melioidosis outbreak in temperate Australia uncovers a region of low-prevalence endemicity. Microbial Genomics, 2016, 2, e000067.	2.0	23
41	Accurate and Rapid Identification of the Burkholderia pseudomallei Near-Neighbour, Burkholderia ubonensis, Using Real-Time PCR. PLoS ONE, 2013, 8, e71647.	2.5	21
42	Melioidosis from Contaminated Bore Water and Successful UV Sterilization. American Journal of Tropical Medicine and Hygiene, 2013, 89, 367-368.	1.4	19
43	Autochthonous Melioidosis in Humans, Madagascar, 2012 and 2013. Emerging Infectious Diseases, 2014, 20, 1735-1737.	4.3	19
44	Comparative genomics confirms a rare melioidosis human-to-human transmission event and reveals incorrect phylogenomic reconstruction due to polyclonality. Microbial Genomics, 2020, 6, .	2.0	19
45	Taking the next-gen step: Comprehensive antimicrobial resistance detection from Burkholderia pseudomallei. EBioMedicine, 2021, 63, 103152.	6.1	18
46	Improved multilocus sequence typing of Burkholderia pseudomallei and closely related species. Journal of Medical Microbiology, 2016, 65, 992-997.	1.8	18
47	pPSX: A novel vector for the cloning and heterologous expression of antitumor antibiotic gene clusters. Plasmid, 2007, 57, 306-313.	1.4	17
48	Burkholderia pseudomallei Genotype Distribution in the Northern Territory, Australia. American Journal of Tropical Medicine and Hygiene, 2016, 94, 68-72.	1.4	17
49	Genomic Insights Into the Melioidosis Pathogen, Burkholderia pseudomallei. Current Tropical Medicine Reports, 2017, 4, 95-102.	3.7	17
50	Increased Neurotropic Threat from <i>Burkholderia pseudomallei</i> Strains with a <i>B. mallei</i> –like Variation in the <i>bimA</i> Motility Gene, Australia. Emerging Infectious Diseases, 2017, 23, .	4.3	17
51	<i>Burkholderia pseudomallei</i> Lipopolysaccharide Genotype Does Not Correlate With Severity or Outcome in Melioidosis: Host Risk Factors Remain the Critical Determinant. Open Forum Infectious Diseases, 2019, 6, ofz091.	0.9	16
52	Phylogeographic, genomic, and meropenem susceptibility analysis of Burkholderia ubonensis. PLoS Neglected Tropical Diseases, 2017, 11, e0005928.	3.0	16
53	Whole-Genome Sequences of Burkholderia pseudomallei Isolates Exhibiting Decreased Meropenem Susceptibility. Genome Announcements, 2017, 5, .	0.8	15
54	Investigation of trimethoprim/sulfamethoxazole resistance in an emerging sequence type 5 methicillin-resistant Staphylococcus aureus clone reveals discrepant resistance reporting. Clinical Microbiology and Infection, 2018, 24, 1027-1029.	6.0	15

#	Article	IF	CITATIONS
55	Tracing the environmental footprint of the Burkholderia pseudomallei lipopolysaccharide genotypes in the tropical "Top End―of the Northern Territory, Australia. PLoS Neglected Tropical Diseases, 2019, 13, e0007369.	3.0	14
56	Virulence of the Melioidosis Pathogen Burkholderia pseudomallei Requires the Oxidoreductase Membrane Protein DsbB. Infection and Immunity, 2018, 86, .	2.2	13
57	Molecular Signatures of Non-typeable Haemophilus influenzae Lung Adaptation in Pediatric Chronic Lung Disease. Frontiers in Microbiology, 2019, 10, 1622.	3.5	13
58	Peptidyl-Prolyl Isomerase <i>ppiB</i> Is Essential for Proteome Homeostasis and Virulence in Burkholderia pseudomallei. Infection and Immunity, 2019, 87, .	2.2	12
59	Pathogen to commensal? Longitudinal within-host population dynamics, evolution, and adaptation during a chronic >16-year Burkholderia pseudomallei infection. PLoS Pathogens, 2020, 16, e1008298.	4.7	12
60	Burkholderia pseudomallei distribution in Australasia is linked to paleogeographic and anthropogenic history. PLoS ONE, 2018, 13, e0206845.	2.5	11
61	Whole-Genome Sequences of Five Burkholderia pseudomallei Isolates from Australian Cystic Fibrosis Patients. Genome Announcements, 2015, 3, .	0.8	10
62	Whole-genome sequencing to investigate a non-clonal melioidosis cluster on a remote Australian island. Microbial Genomics, 2017, 3, e000117.	2.0	10
63	Selective isolation of Yersinia pestis from plague-infected fleas. Journal of Microbiological Methods, 2010, 82, 95-97.	1.6	9
64	A Persisting Nontropical Focus of Burkholderia pseudomallei with Limited Genome Evolution over Five Decades. MSystems, 2020, 5, .	3.8	9
65	Molecular Epidemiology of Third-Generation-Cephalosporin-Resistant <i>Enterobacteriaceae</i> in Southeast Queensland, Australia. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	9
66	Identification and typing of <i>Francisella tularensis</i> with a highly automated genotyping assay. Letters in Applied Microbiology, 2013, 56, 128-134.	2.2	8
67	Staphylococcus aureus from patients with chronic rhinosinusitis show minimal genetic association between polyp and non-polyp phenotypes. BMC Ear, Nose and Throat Disorders, 2018, 18, 16.	2.6	8
68	Quantitative real-time PCR assay for the rapid identification of the intrinsically multidrug-resistant bacterial pathogen Stenotrophomonas maltophilia. Microbial Genomics, 2019, 5, .	2.0	8
69	pPSY: A vector for the stable cloning and expression of streptomycete single gene phenotypes in Escherichia coli. Plasmid, 2008, 60, 53-58.	1.4	7
70	Development and validation of a triplex quantitative real-time PCR assay to detect efflux pump-mediated antibiotic resistance in <i>Burkholderia pseudomallei</i> . Future Microbiology, 2018, 13, 1403-1418.	2.0	7
71	Pharmacodynamic Evaluation of Plasma and Epithelial Lining Fluid Exposures of Amikacin against Pseudomonas aeruginosa in a Dynamic <i>In Vitro</i> Hollow-Fiber Infection Model. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	7
72	Human Infection with Burkholderia thailandensis, China, 2013. Emerging Infectious Diseases, 2018, 24, 953-954.	4.3	6

#	Article	IF	CITATIONS
73	Comparative genomic analysis identifies X-factor (haemin)-independent Haemophilus haemolyticus: a formal re-classification of 'Haemophilus intermedius'. Microbial Genomics, 2020, 6, .	2.0	6
74	Genomic diversity and antimicrobial resistance of Prevotella species isolated from chronic lung disease airways. Microbial Genomics, 2022, 8, .	2.0	6
75	Plasmid encoded antibiotics inhibit protozoan predation of Escherichia coli K12. Plasmid, 2011, 66, 152-158.	1.4	5
76	Complete sequence and analysis of the stability functions of pPSX, a vector that allows stable cloning and expression of Streptomycete genes in Escherichia coli K12. Plasmid, 2009, 62, 39-43.	1.4	4
77	Molecular genotyping of Acinetobacter spp. isolated in Arizona, USA, using multilocus PCR and mass spectrometry. Journal of Medical Microbiology, 2013, 62, 1295-1300.	1.8	4
78	Melioidosis in New Caledonia: a dominant strain in a transmission hotspot. Epidemiology and Infection, 2016, 144, 1330-1337.	2.1	4
79	Express Yourself: Quantitative Real-Time PCR Assays for Rapid Chromosomal Antimicrobial Resistance Detection in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2022, 66, e0020422.	3.2	4
80	Whole-Genome Sequencing to Differentiate Relapse From Reinfection in Community-Onset Bacteremic Acinetobacter baumannii Pneumonia. Open Forum Infectious Diseases, 2019, 6, ofz263.	0.9	3
81	Duplex real-time PCR assay for the simultaneous detection of Achromobacter xylosoxidans and Achromobacter spp Microbial Genomics, 2020, 6, .	2.0	3
82	Complete Genome Sequence of the Environmental Burkholderia pseudomallei Sequence Type 131 Isolate MSHR1435, Associated with a Chronic Melioidosis Infection. Genome Announcements, 2018, 6, .	0.8	2
83	The Scourge of Antibiotic-resistant Infections in Cystic Fibrosis. Trends in Microbiology, 2019, 27, 289-291.	7.7	1
84	Comparative genomics of Nocardia seriolae reveals recent importation and subsequent widespread dissemination in mariculture farms in the South Central Coast region, Vietnam. Microbial Genomics, 2022, 8, .	2.0	1