Tatyana I Gromovykh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5718778/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellulose-based scaffolds for fluorescence lifetime imaging-assisted tissue engineering. Acta Biomaterialia, 2018, 80, 85-96.	8.3	45
2	Bacterial cellulose synthesized by Gluconacetobacter hansenii for medical applications. Applied Biochemistry and Microbiology, 2017, 53, 60-67.	0.9	33
3	Structural organization of bacterial cellulose: The origin of anisotropy and layered structures. Carbohydrate Polymers, 2020, 237, 116140.	10.2	33
4	Physicochemical Mechanics of Bacterial Cellulose. Colloid Journal, 2019, 81, 366-376.	1.3	21
5	A new approach to purification of bacterial cellulose membranes: What happens to bacteria in supercritical media?. Journal of Supercritical Fluids, 2019, 147, 59-69.	3.2	19
6	Films of Bacterial Cellulose Prepared from Solutions in N-Methylmorpholine-N-Oxide: Structure and Properties. Processes, 2020, 8, 171.	2.8	10
7	Cellulose Fibers from Solutions of Bacterial Cellulose in N-Methylmorpholine N-Oxide. Fibre Chemistry, 2019, 51, 175-181.	0.2	9
8	Creation of composites of bacterial cellulose and silver nanoparticles: evaluation of antimicrobial activity and cytotoxicity. International Journal of Nanotechnology, 2019, 16, 408.	0.2	8
9	Antifungal Composite Fibers Based on Cellulose and Betulin. Fibers, 2018, 6, 23.	4.0	7
10	Cytotoxic and Antitumor Activity of Liposomal Silibinin. BioNanoScience, 2018, 8, 971-976.	3.5	7
11	Antihepatotoxic Activity of Liposomal Silibinin. BioNanoScience, 2018, 8, 581-586.	3.5	6
12	Elaboration of a bacterial cellulose matrix for the immobilisation of Escherichia coli cells. International Journal of Nanotechnology, 2018, 15, 288.	0.2	4
13	Effect of Interaction of Bacterial Cellulose with Gold Nanoparticles Obtained by Metal Vapor Synthesis. Doklady Physical Chemistry, 2019, 488, 146-150.	0.9	4
14	Preparation of stabilized silver nanoparticles and study of their antimicrobial and cytotoxic activity on the human hepatoma HepG2 cell line. Nanotechnologies in Russia, 2019, 14, 273-279.	0.7	4
15	Study of the biological activity of liposomal sanguinarine on cultures of tumor cells and protozoa. Vestnik Tomskogo Gosudarstvennogo Universiteta, Biologiya, 2018, , 99-117.	0.3	2
16	Preparation of liposomes containing benzophenanthridine alkaloid sanguinarine and evaluation of its cytotoxic activity. International Journal of Nanotechnology, 2018, 15, 280.	0.2	1
17	Development of bacterial cellulose biomaterial: preparation and establishment of cytotoxicity for eukaryotic cells. International Journal of Nanotechnology, 2019, 16, 87.	0.2	1
18	Antimicrobial and Cytotoxic Activity of Silver Nanoparticles Stabilized by Natural Biopolymer Arabinogalactan. International Journal of Nanoscience, 2020, 19, 1950029.	0.7	1

#	Article	IF	CITATIONS
19	HYBRID MATERIALS BASED ON METAL-CONTAINING MICROCRYSTALLINE AND BACTERIAL CELLULOSE: GREEN SYNTHESIS AND CHARACTERIZATION , 2019, , .		1
20	Preparation and investigation of in vitro cytotoxic activity of pH-sensitive liposomes with sanguinarine. International Journal of Nanotechnology, 2019, 16, 77.	0.2	0
21	Films of bacterial cellulose with lipid nanoparticles of sanguinarine as a basis for creating antimicrobial coating materials. International Journal of Nanotechnology, 2019, 16, 436.	0.2	0
22	Biological Activity of Agaricinic Acid Nanoparticles against Human Hepatoma HepG2 Cells. Bulletin of Experimental Biology and Medicine, 2020, 169, 508-511.	0.8	0
23	The Influence of Electrolyte Solutions on the Mechanical Properties of Bacterial Cellulose. Colloid Journal, 2020, 82, 475-478.	1.3	0