Eric M Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5718753/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shear-Wave Velocity–Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2013, 139, 407-419.	3.0	272
2	Regional Correlations of VS30 and Velocities Averaged Over Depths Less Than and Greater Than 30 Meters. Bulletin of the Seismological Society of America, 2011, 101, 3046-3059.	2.3	155
3	The 2018 update of the US National Seismic Hazard Model: Overview of model and implications. Earthquake Spectra, 2020, 36, 5-41.	3.1	149
4	Comparison of 1D linear, equivalent-linear, and nonlinear site response models at six KiK-net validation sites. Soil Dynamics and Earthquake Engineering, 2015, 69, 207-219.	3.8	146
5	A taxonomy of site response complexity. Soil Dynamics and Earthquake Engineering, 2012, 41, 32-43.	3.8	145
6	Critical Parameters Affecting Bias and Variability in Site-Response Analyses Using KiK-net Downhole Array Data. Bulletin of the Seismological Society of America, 2013, 103, 1733-1749.	2.3	143
7	A Global Empirical Model for Nearâ€Realâ€Time Assessment of Seismically Induced Landslides. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1835-1859.	2.8	135
8	An Updated Geospatial Liquefaction Model for Global Application. Bulletin of the Seismological Society of America, 2017, 107, 1365-1385.	2.3	105
9	Path Durations for Use in the Stochastic-Method Simulation of Ground Motions. Bulletin of the Seismological Society of America, 2014, 104, 2541-2552.	2.3	101
10	Impediments to Predicting Site Response: Seismic Property Estimation and Modeling Simplifications. Bulletin of the Seismological Society of America, 2009, 99, 2927-2949.	2.3	96
11	Development of a globally applicable model for near real-time prediction of seismically induced landslides. Engineering Geology, 2014, 173, 54-65.	6.3	88
12	A VS30 Map for California with Geologic and Topographic Constraints. Bulletin of the Seismological Society of America, 2014, 104, 2313-2321.	2.3	85
13	A global hybrid <i>V_S</i> ₃₀ map with a topographic slope–based default and regional map insets. Earthquake Spectra, 2020, 36, 1570-1584.	3.1	82
14	Spatial and Spectral Interpolation of Groundâ€Motion Intensity Measure Observations. Bulletin of the Seismological Society of America, 2018, 108, 866-875.	2.3	81
15	Revisions to Some Parameters Used in Stochasticâ€Method Simulations of Ground Motion. Bulletin of the Seismological Society of America, 2015, 105, 1029-1041.	2.3	75
16	A Geospatial Liquefaction Model for Rapid Response and Loss Estimation. Earthquake Spectra, 2015, 31, 1813-1837.	3.1	59
17	Geotechnical Effects of the 2015 MagnitudeÂ7.8 Gorkha, Nepal, Earthquake and Aftershocks. Seismological Research Letters, 2015, 86, 1514-1523.	1.9	55
18	Improving Nearâ€Realâ€Time Coseismic Landslide Models: Lessons Learned from the 2016 KaikÅura, New Zealand, Farthquake, Bulletin of the Seismological Society of America, 2018, 108, 1649-1664	2.3	48

ERIC M THOMPSON

#	Article	IF	CITATIONS
19	Characterizing the Kathmandu Valley sediment response through strong motion recordings of the 2015 Gorkha earthquake sequence. Tectonophysics, 2017, 714-715, 146-157.	2.2	37
20	Empirical Improvements for Estimating Earthquake Response Spectra with Random-Vibration Theory. Bulletin of the Seismological Society of America, 2012, 102, 761-772.	2.3	35
21	A geostatistical approach to mapping site response spectral amplifications. Engineering Geology, 2010, 114, 330-342.	6.3	34
22	Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments. Soil Dynamics and Earthquake Engineering, 2007, 27, 144-152.	3.8	32
23	Estimating Rupture Distances without a Rupture. Bulletin of the Seismological Society of America, 2018, 108, 371-379.	2.3	32
24	A Flatfile of Ground Motion Intensity Measurements from Induced Earthquakes in Oklahoma and Kansas. Earthquake Spectra, 2018, 34, 1-20.	3.1	31
25	ShakeMap operations, policies, and procedures. Earthquake Spectra, 2022, 38, 756-777.	3.1	31
26	Soil amplification with a strong impedance contrast: Boston, Massachusetts. Engineering Geology, 2016, 202, 1-13.	6.3	30
27	The 2019 Ridgecrest, California, Earthquake Sequence Ground Motions: Processed Records and Derived Intensity Metrics. Seismological Research Letters, 2020, 91, 2010-2023.	1.9	29
28	Geotechnical Reconnaissance of the 2002 Denali Fault, Alaska, Earthquake. Earthquake Spectra, 2004, 20, 639-667.	3.1	25
29	Repeatable Source, Path, and Site Effects from the 2019 MÂ7.1 Ridgecrest Earthquake Sequence. Bulletin of the Seismological Society of America, 2020, 110, 1530-1548.	2.3	23
30	On using surface-source downhole-receiver logging to determine seismic slownesses. Soil Dynamics and Earthquake Engineering, 2007, 27, 971-985.	3.8	20
31	Uncertainty in <i>V</i> _{<i>S</i>30} â€Based Site Response. Bulletin of the Seismological Society of America, 2016, 106, 453-463.	2.3	20
32	A Machine Learning Approach to Developing Ground Motion Models From Simulated Ground Motions. Geophysical Research Letters, 2020, 47, e2019GL086690.	4.0	20
33	A global index earthquake approach to probabilistic assessment of extremes. Journal of Geophysical Research, 2007, 112, .	3.3	19
34	Multiscale Site-Response Mapping: A Case Study of Parkfield, California. Bulletin of the Seismological Society of America, 2011, 101, 1081-1100.	2.3	19
35	Ground Failure from the Anchorage, Alaska, Earthquake of 30 November 2018. Seismological Research Letters, 2020, 91, 19-32.	1.9	19
36	USCS Nearâ€Realâ€Time Products—and Their Use—for the 2018 Anchorage Earthquake. Seismological Research Letters, 2020, 91, 94-113.	1.9	19

ERIC M THOMPSON

#	Article	IF	CITATIONS
37	The Case for Mean Rupture Distance in Groundâ€Motion Estimation. Bulletin of the Seismological Society of America, 2018, 108, 2462-2477.	2.3	17
38	Groundâ€Motion Amplification in Cook Inlet Region, Alaska, from Intermediateâ€Depth Earthquakes, Including the 2018 MwÂ7.1 Anchorage Earthquake. Seismological Research Letters, 2020, 91, 142-152.	1.9	17
39	The US Geological Survey ground failure product: Near-real-time estimates of earthquake-triggered landslides and liquefaction. Earthquake Spectra, 2022, 38, 5-36.	3.1	16
40	Near-Field Ground Motions from the July 2019 Ridgecrest, California, Earthquake Sequence. Seismological Research Letters, 2020, 91, 1542-1555.	1.9	13
41	Ground Motions from Induced Earthquakes in Oklahoma and Kansas. Seismological Research Letters, 2019, 90, 160-170.	1.9	12
42	Evaluation of Groundâ€Motion Models for USGS Seismic Hazard Forecasts: Induced and Tectonic Earthquakes in the Central and Eastern United States. Bulletin of the Seismological Society of America, 2019, 109, 322-335.	2.3	12
43	The 2018 update of the US National Seismic Hazard Model: Ground motion models in the western US. Earthquake Spectra, 2021, 37, 2315-2341.	3.1	12
44	Near-Field Ground Motions and Shaking from the 2019 MwÂ7.1 Ridgecrest, California, Mainshock: Insights from Instrumental, Macroseismic Intensity, and Remote-Sensing Data. Bulletin of the Seismological Society of America, 2020, 110, 1506-1516.	2.3	10
45	The 2018 update of the US National Seismic Hazard Model: Ground motion models in the central and eastern US. Earthquake Spectra, 2021, 37, 1354-1390.	3.1	9
46	Selection of random vibration theory procedures for the NGA-East project and ground-motion modeling. Earthquake Spectra, 2021, 37, 1420-1439.	3.1	9
47	Evaluation of Ground-Motion Models for U.S. Geological Survey Seismic Hazard Forecasts: Hawaii Tectonic Earthquakes and Volcanic Eruptions. Bulletin of the Seismological Society of America, 2020, 110, 666-688.	2.3	8
48	Evaluation of Groundâ€Motion Models for U.S. Geological Survey Seismic Hazard Models: 2018 Anchorage, Alaska, MwÂ7.1 Subduction Zone Earthquake Sequence. Seismological Research Letters, 2020, 91, 183-194.	1.9	6
49	The 2018 update of the US National Seismic Hazard Model: Where, why, and how much probabilistic ground motion maps changed. Earthquake Spectra, 2021, 37, 959-987.	3.1	6
50	Partitioning Ground Motion Uncertainty When Conditioned on Station Data. Bulletin of the Seismological Society of America, 2022, 112, 1060-1079.	2.3	6
51	The Gumbel hypothesis test for left censored observations using regional earthquake records as an example. Natural Hazards and Earth System Sciences, 2011, 11, 115-126.	3.6	5
52	Discussion of "Mapping Liquefaction Potential Considering Spatial Correlations of CPT Measurements―by Chia-Nan Liu and Chien-Hsun Chen. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2008, 134, 262-263.	3.0	4
53	Evaluation of Ground-Motion Models for USGS Seismic Hazard Models Using Near-Source Instrumental Ground-Motion Recordings of the Ridgecrest, California, Earthquake Sequence. Bulletin of the Seismological Society of America, 2020, 110, 1517-1529.	2.3	4
54	Basin and Site Effects in the U.S. Pacific Northwest Estimated from Small-Magnitude Earthquakes. Bulletin of the Seismological Society of America, 2022, 112, 438-456.	2.3	4

ERIC M THOMPSON

#	Article	IF	CITATIONS
55	The Impact of 3D Finite-Fault Information on Ground-Motion Forecasting for Earthquake Early Warning. Bulletin of the Seismological Society of America, 2022, 112, 779-802.	2.3	4
56	Ground Failure Triggered by the 7 January 2020 MÂ6.4 Puerto Rico Earthquake. Seismological Research Letters, 0, , .	1.9	4
57	Closure to "Shear-Wave Velocity–Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential―by R. Kayen, R. E. S. Moss, E. M. Thompson, R. B. Seed, K. O. Cetin, A. Der Kiureghian, Y. Tanaka, and K. Tokimatsu. Journal of Geotechnical and Geoenvironmental Engineering - ASCE. 2014. 140. 07014006.	3.0	3
58	Seismic Wave Propagation and Basin Amplification in the Wasatch Front, Utah. Seismological Research Letters, 2021, 92, 3626-3641.	1.9	3
59	Evaluation of Remote Mapping Techniques for Earthquake-Triggered Landslide Inventories in an Urban Subarctic Environment: A Case Study of the 2018 Anchorage, Alaska Earthquake. Frontiers in Earth Science, 2021, 9, .	1.8	3
60	A near-real-time model for estimating probability of road obstruction due to earthquake-triggered landslides. Earthquake Spectra, 2021, 37, 2400-2418.	3.1	3
61	Automated Detection of Clipping in Broadband Earthquake Records. Seismological Research Letters, 2022, 93, 880-896.	1.9	3
62	Earthquakes, ShakeMap. Encyclopedia of Earth Sciences Series, 2019, , 1-6.	0.1	1
63	DOCUMENTING AND COMMUNICATING GROUND FAILURE TRIGGERED BY THE 2020 SOUTHWEST PUERTO RICO SEISMIC SEQUENCE. , 2020, , .		1
64	Earthquakes, ShakeMap. Encyclopedia of Earth Sciences Series, 2021, , 316-321.	0.1	0