Jason H Hafner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5718725/publications.pdf Version: 2024-02-01

IASON H HAENED

#	Article	IF	CITATIONS
1	Compressive Hyperspectral Microscopy of Scattering and Fluorescence of Nanoparticles. Journal of Physical Chemistry C, 2022, 126, 2614-2626.	3.1	4
2	Effects of Conformational Variation on Structural Insights from Solution-Phase Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry B, 2021, 125, 2031-2041.	2.6	5
3	Effects of Surface Protein Adsorption on the Distribution and Retention of Intratumorally Administered Gold Nanoparticles. Pharmaceutics, 2021, 13, 216.	4.5	10
4	Improvements in Gold Nanorod Biocompatibility with Sodium Dodecyl Sulfate Stabilization. Journal of Nanotheranostics, 2021, 2, 157-173.	3.1	7
5	The orientation of a membrane probe from structural analysis by enhanced Raman scattering. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183109.	2.6	4
6	Thermophoresis of gold nanorods from surface enhanced Raman scattering and real-time Rayleigh scattering in solution. Analytical Methods, 2019, 11, 2482-2488.	2.7	6
7	Ultraviolet Analysis of Gold Nanorod and Nanosphere Solutions. Journal of Physical Chemistry C, 2017, 121, 5201-5207.	3.1	12
8	Structural Analysis by Enhanced Raman Scattering. Nano Letters, 2017, 17, 2172-2177.	9.1	15
9	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	14.6	4
10	Our First and Next Decades at ACS Nano. ACS Nano, 2017, 11, 7553-7555.	14.6	0
11	A Big Year Ahead for Nano in 2018. ACS Nano, 2017, 11, 11755-11757.	14.6	1
12	Nanoscience and Nanotechnology Impacting Diverse Fields of Science, Engineering, and Medicine. ACS Nano, 2016, 10, 10615-10617.	14.6	22
13	Grand Plans for Nano. ACS Nano, 2015, 9, 11503-11505.	14.6	3
14	Analysis of Phospholipid Bilayers on Gold Nanorods by Plasmon Resonance Sensing and Surface-Enhanced Raman Scattering. Langmuir, 2015, 31, 9893-9900.	3.5	43
15	A Year for Nanoscience. ACS Nano, 2014, 8, 11901-11903.	14.6	6
16	Synthesis and Crystal Structure of Gold Nanobelts. Chemistry of Materials, 2014, 26, 1999-2004.	6.7	15
17	Be Critical but Fair. ACS Nano, 2013, 7, 8313-8316.	14.6	5
18	Exciting Times for Nano. ACS Nano, 2013, 7, 10437-10439.	14.6	1

#	Article	IF	CITATIONS
19	Gold Nanobelts as High Confinement Plasmonic Waveguides. Nano Letters, 2013, 13, 6256-6261.	9.1	26
20	Nanostructure shape effects on response of plasmonic aptamer sensors. Journal of Molecular Recognition, 2013, 26, 402-407.	2.1	14
21	Novel Plasmonic Structures Based on Gold Nanobelts. Journal of Physical Chemistry C, 2013, 117, 4734-4739.	3.1	7
22	Sensing and Sensibility. ACS Nano, 2013, 7, 877-878.	14.6	0
23	We Take It Personally. ACS Nano, 2012, 6, 10417-10419.	14.6	3
24	Noble Metal Nanowires: From Plasmon Waveguides to Passive and Active Devices. Accounts of Chemical Research, 2012, 45, 1887-1895.	15.6	133
25	Plasmonic Materials: A Plethora of Plasmonics from the Laboratory for Nanophotonics at Rice University (Adv. Mater. 36/2012). Advanced Materials, 2012, 24, 4774-4774.	21.0	5
26	Recycling Is Not Always Good: The Dangers of Self-Plagiarism. ACS Nano, 2012, 6, 1-4.	14.6	49
27	Utilizing 3D SERS Active Volumes in Aligned Carbon Nanotube Scaffold Substrates. Advanced Materials, 2012, 24, 5261-5266.	21.0	103
28	A Plethora of Plasmonics from the Laboratory for Nanophotonics at Rice University. Advanced Materials, 2012, 24, 4842-4877.	21.0	94
29	Someone Is Going To Pay for This. ACS Nano, 2012, 6, 4543-4544.	14.6	0
30	Surface-modified gold nanorods for specific cell targeting. Journal of the Korean Physical Society, 2012, 60, 1700-1707.	0.7	6
31	ACS Nano in 2011 and Looking Forward to 2012. ACS Nano, 2011, 5, 9301-9302.	14.6	0
32	Virtual Issue on Plasmonics. ACS Nano, 2011, 5, 4245-4248.	14.6	16
33	Structural Transition in the Surfactant Layer that Surrounds Gold Nanorods as Observed by Analytical Surface-Enhanced Raman Spectroscopy. Langmuir, 2011, 27, 14748-14756.	3.5	88
34	A Tunable Plasmon Resonance in Gold Nanobelts. Nano Letters, 2011, 11, 5034-5037.	9.1	56
35	Tunable Plasmonic Nanoprobes for Theranostics of Prostate Cancer. Theranostics, 2011, 1, 3-17.	10.0	74
36	Localized Surface Plasmon Resonance Sensors. Chemical Reviews, 2011, 111, 3828-3857.	47.7	3,388

#	Article	IF	CITATIONS
37	General and Special Probes in Scanning Microscopies. , 2011, , 111-134.		1
38	Rainbow Plasmonic Nanobubbles: Synergistic Activation of Gold Nanoparticle Clusters. Journal of Nanomedicine & Nanotechnology, 2011, 02, 1-8.	1.1	15
39	Optically guided controlled release from liposomes with tunable plasmonic nanobubbles. Journal of Controlled Release, 2010, 144, 151-158.	9.9	106
40	The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts. Biomaterials, 2010, 31, 7567-7574.	11.4	103
41	A single molecule immunoassay by localized surface plasmon resonance. Nanotechnology, 2010, 21, 255503.	2.6	149
42	The Art of the Cover Letter. ACS Nano, 2010, 4, 2487-2487.	14.6	16
43	Hot plasmonic interactions: a new look at the photothermal efficacy of gold nanoparticles. Physical Chemistry Chemical Physics, 2010, 12, 12237.	2.8	34
44	Quantitative Measurements of Individual Gold Nanoparticle Scattering Cross Sections. Journal of Physical Chemistry C, 2010, 114, 11127-11132.	3.1	43
45	Enhanced Raman Scattering from Nanoparticle-Decorated Nanocone Substrates: A Practical Approach to Harness In-Plane Excitation. ACS Nano, 2010, 4, 5721-5730.	14.6	48
46	Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated around Plasmonic Nanoparticles. ACS Nano, 2010, 4, 2109-2123.	14.6	334
47	Tunable plasmonic nanobubbles for cell theranostics. Nanotechnology, 2010, 21, 085102.	2.6	122
48	Generation and detection of plasmonic nanobubbles in zebrafish. Nanotechnology, 2010, 21, 225102.	2.6	20
49	General and Special Probes in Scanning Microscopies. , 2010, , 619-633.		1
50	Improved Localized Surface Plasmon Resonance Immunoassay with Gold Bipyramid Substrates. Analytical Chemistry, 2009, 81, 4450-4455.	6.5	124
51	The stabilization and targeting of surfactant-synthesized gold nanorods. Nanotechnology, 2009, 20, 434005.	2.6	92
52	A Label-Free Immunoassay Based Upon Localized Surface Plasmon Resonance of Gold Nanorods. ACS Nano, 2008, 2, 687-692.	14.6	414
53	LANTCET: elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles. Nanomedicine, 2008, 3, 647-667.	3.3	86
54	Photothermal bubbles as optical scattering probes for imaging living cells. Nanomedicine, 2008, 3, 797-812.	3.3	43

#	Article	IF	CITATIONS
55	Probing the Lipid Membrane Dipole Potential by Atomic Force Microscopy. Biophysical Journal, 2008, 95, 5193-5199.	0.5	58
56	Shape-dependent plasmon resonances of gold nanoparticles. Journal of Materials Chemistry, 2008, 18, 2415.	6.7	415
57	Close Encounters between Two Nanoshells. Nano Letters, 2008, 8, 1212-1218.	9.1	462
58	Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells. , 2008, , .		3
59	Probes in Scanning Microscopies. , 2008, , 111-133.		0
60	Nanocluster: photothermal bubble as optical probes for cytometric and microscopic applications. , 2007, , .		2
61	Plasmon Resonances of a Gold Nanostar. Nano Letters, 2007, 7, 729-732.	9.1	838
62	Quantitative Membrane Electrostatics with the Atomic Force Microscope. Biophysical Journal, 2007, 92, 1966-1974.	0.5	39
63	Probes in Scanning Microscopies. , 2007, , 637-650.		0
64	Monitoring Gold Nanorod Synthesis by Localized Surface Plasmon Resonance. Journal of Physical Chemistry B, 2006, 110, 22323-22327.	2.6	70
65	Symmetry breaking in individual plasmonic nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10856-10860.	7.1	270
66	Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine, 2006, 1, 201-208.	3.3	344
67	Optical Properties of Star-Shaped Gold Nanoparticles. Nano Letters, 2006, 6, 683-688.	9.1	1,054
68	Gold Nanorod Bioconjugates. Chemistry of Materials, 2005, 17, 4636-4641.	6.7	411
69	Protein Crystals as Scanned Probes for Recognition Atomic Force Microscopy. Nano Letters, 2005, 5, 2418-2421.	9.1	6
70	Monitoring Gold Nanorod Synthesis on Surfaces. Journal of Physical Chemistry B, 2004, 108, 19276-19280.	2.6	38
71	Scattering Spectra of Single Gold Nanoshells. Nano Letters, 2004, 4, 2355-2359.	9.1	269
72	Low-Temperature Single-Wall Carbon Nanotube Synthesis by Thermal Chemical Vapor Deposition. Journal of Physical Chemistry B, 2004, 108, 6941-6943.	2.6	34

#	Article	IF	CITATIONS
73	Probes in Scanning Microscopies. , 2004, , 371-384.		Ο
74	Probes in Scanning Microscopies. , 2004, , 371-384.		0
75	Fluid Electric Force Microscopy for Charge Density Mapping in Biological Systems. Langmuir, 2003, 19, 10007-10010.	3.5	32
76	Plastic deformations in mechanically strained single-walled carbon nanotubes. Physical Review B, 2003, 67, .	3.2	99
77	Polarized resonant Raman study of isolated single-wall carbon nanotubes: Symmetry selection rules, dipolar and multipolar antenna effects. Physical Review B, 2002, 65, .	3.2	124
78	Resonance Raman scattering: nondestructive and noninvasive technique for structural and electronic characterization of isolated single-wall carbon nanotubes. Brazilian Journal of Physics, 2002, 32, 921-924.	1.4	4
79	Probing the electronic trigonal warping effect in individual single-wall carbon nanotubes using phonon spectra. Chemical Physics Letters, 2002, 354, 62-68.	2.6	51
80	G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Physical Review B, 2002, 65,	3.2	430
81	Anomalous two-peakG′-band Raman effect in one isolated single-wall carbon nanotube. Physical Review B, 2002, 65, .	3.2	76
82	Scanning Probe Microscopy Studies of Carbon Nanotubes. , 2001, , 173-211.		32
83	Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering. Physical Review B, 2001, 63, .	3.2	149
84	Resonant Electron Scattering by Defects in Single-Walled Carbon Nanotubes. Science, 2001, 291, 283-285.	12.6	391
85	High-Yield Assembly of Individual Single-Walled Carbon Nanotube Tips for Scanning Probe Microscopies. Journal of Physical Chemistry B, 2001, 105, 743-746.	2.6	332
86	Structural (n,m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering. Physical Review Letters, 2001, 86, 1118-1121.	7.8	1,405
87	Chirality-dependent G-band Raman intensity of carbon nanotubes. Physical Review B, 2001, 64, .	3.2	115
88	Diameter dependence of the RamanD-band in isolated single-wall carbon nanotubes. Physical Review B, 2001, 64, .	3.2	112
89	Effect of quantized electronic states on the dispersive Raman features in individual single-wall carbon nanotubes. Physical Review B, 2001, 65, .	3.2	46
90	Fabry - Perot interference in a nanotube electron waveguide. Nature, 2001, 411, 665-669.	27.8	875

#	Article	IF	CITATIONS
91	Structural and functional imaging with carbon nanotube AFM probes. Progress in Biophysics and Molecular Biology, 2001, 77, 73-110.	2.9	311
92	Direct Imaging of Human SWI/SNF-Remodeled Mono- and Polynucleosomes by Atomic Force Microscopy Employing Carbon Nanotube Tips. Molecular and Cellular Biology, 2001, 21, 8504-8511.	2.3	82
93	Electronic transition energyEiifor an isolated(n,m)single-wall carbon nanotube obtained by anti-Stokes/Stokes resonant Raman intensity ratio. Physical Review B, 2001, 63, .	3.2	84
94	Electronic properties of mechanically induced kinks in single-walled carbon nanotubes. Applied Physics Letters, 2001, 78, 3693-3695.	3.3	68
95	Structural biology with carbon nanotube AFM probes. Chemistry and Biology, 2000, 7, R193-R204.	6.0	76
96	Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3809-3813.	7.1	230
97	Growth and fabrication with single-walled carbon nanotube probe microscopy tips. Applied Physics Letters, 2000, 76, 3136-3138.	3.3	132
98	Growth of nanotubes for probe microscopy tips. Nature, 1999, 398, 761-762.	27.8	384
99	Direct Growth of Single-Walled Carbon Nanotube Scanning Probe Microscopy Tips. Journal of the American Chemical Society, 1999, 121, 9750-9751.	13.7	213
100	Catalytic growth of single-wall carbon nanotubes from metal particles. Chemical Physics Letters, 1998, 296, 195-202.	2.6	608
101	Fullerene Pipes. Science, 1998, 280, 1253-1256.	12.6	3,032
102	Fullerene 'crop circles'. Nature, 1997, 385, 780-781.	27.8	402
103	Nanotubes as nanoprobes in scanning probe microscopy. Nature, 1996, 384, 147-150.	27.8	2,213
104	Unraveling Nanotubes: Field Emission from an Atomic Wire. Science, 1995, 269, 1550-1553.	12.6	1,525
105	Growth and Sintering of Fullerene Nanotubes. Science, 1994, 266, 1218-1222.	12.6	285
106	Field Emission and Growth of Fullerene Nanotubes. Materials Research Society Symposia Proceedings, 1994, 359, 61.	0.1	7