
Carlos A Cifuentes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5718444/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Personalised socially assistive robot for cardiac rehabilitation: Critical reflections on long-term interactions in the real world. User Modeling and User-Adapted Interaction, 2023, 33, 497-544.	2.9	3
2	Introduction to Robotics for Gait Assistance and Rehabilitation. , 2022, , 1-41.		1
3	Assessment of Robotic Devices for Gait Assistance and Rehabilitation. , 2022, , 331-348.		Ο
4	Experiences of Clinicians Using Rehabilitation Robotics. , 2022, , 349-375.		0
5	Socially Assistive Robotics for Gait Rehabilitation. , 2022, , 287-307.		0
6	Control Strategies for Human–Robot–Environment Interaction in Assisted Gait with Smart Walkers. , 2022, , 259-286.		5
7	Impedance Control Strategies for Lower-Limb Exoskeletons. , 2022, , 213-236.		Ο
8	Experimental Characterization of Flexible and Soft Actuators for Rehabilitation and Assistive Devices. , 2022, , 169-192.		2
9	Kinematics, Actuation, and Sensing Architectures for Rehabilitation and Assistive Robotics. , 2022, , 43-92.		0
10	Serious Games in Robot-Assisted Rehabilitation Therapy for Neurological Patients. , 2022, , 309-329.		1
11	Brain–Computer Interface for Controlling Lower-Limb Exoskeletons. , 2022, , 237-258.		2
12	Fundamentals for the Design of Lower-Limb Exoskeletons. , 2022, , 93-120.		1
13	Sensing Methodologies for Gait Parameters Estimation and Control. , 2022, , 143-168.		0
14	Variable Stiffness Actuators for Wearable Applications in Gait Rehabilitation. , 2022, , 193-212.		2
15	Fundamentals for the Design of Smart Walkers. , 2022, , 121-141.		1
16	3D Relative Motion Assessment in Lower-Limb Exoskeletons: A Case of Study with AGoRA Exoskeleton. Biosystems and Biorobotics, 2022, , 633-637.	0.2	1
17	Towards a Fabric-Based Soft Hand Exoskeleton for Various Grasp Taxonomies. Biosystems and Biorobotics, 2022, , 369-373.	0.2	2
18	Visual Feedback Strategy Based on Serious Games for Therapy with T-FLEX Ankle Exoskeleton. Biosystems and Biorobotics, 2022, , 467-472.	0.2	2

#	Article	IF	CITATIONS
19	The PoundCloud framework for ROS-based cloud robotics: Case studies on autonomous navigation and human–robot interaction. Robotics and Autonomous Systems, 2022, 150, 103981.	3.0	15
20	Development of a 3D Relative Motion Method for Human–Robot Interaction Assessment. Sensors, 2022, 22, 2411.	2.1	5
21	Biomechanical Assessment of Post-Stroke Patients' Upper Limb before and after Rehabilitation Therapy Based on FES and VR. Sensors, 2022, 22, 2693.	2.1	2
22	Human-in-the-Loop Control for AGoRA Unilateral Lower-Limb Exoskeleton. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 104, 1.	2.0	9
23	The AGoRA V2 Unilateral Lower-Limb Exoskeleton: Mechatronic Integration and Biomechanical Assessment. IEEE Robotics and Automation Letters, 2022, 7, 7928-7933.	3.3	4
24	Physical Human-Robot Interaction Influence in ASD Therapy Through an Affordable Soft Social Robot. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 105, .	2.0	5
25	Social Assistive Robots: Assessing the Impact of a Training Assistant Robot in Cardiac Rehabilitation. International Journal of Social Robotics, 2021, 13, 1189-1203.	3.1	23
26	Collaborative and Inclusive Process with the Autism Community: A Case Study in Colombia About Social Robot Design. International Journal of Social Robotics, 2021, 13, 153-167.	3.1	27
27	Online System for Gait Parameters Estimation Using a LRF Sensor for Assistive Devices. IEEE Sensors Journal, 2021, 21, 14272-14280.	2.4	6
28	Long-Term Social Human-Robot Interaction for Neurorehabilitation: Robots as a Tool to Support Gait Therapy in the Pandemic. Frontiers in Neurorobotics, 2021, 15, 612034.	1.6	13
29	Conversational Agents for Healthcare Delivery: Potential Solutions to the Challenges of the Pandemic. , 2021, , 111-136.		1
30	Wearable Sensors for Monitoring Exercise and Fatigue Estimation in Rehabilitation. , 2021, , 83-110.		0
31	A Socially Assistive Robot for Long-Term Cardiac Rehabilitation in the Real World. Frontiers in Neurorobotics, 2021, 15, 633248.	1.6	32
32	First Interaction Assessment between a Social Robot and Children Diagnosed with Cerebral Palsy in a Rehabilitation Context. , 2021, , .		4
33	The Actuation System of the Ankle Exoskeleton T-FLEX: First Use Experimental Validation in People with Stroke. Brain Sciences, 2021, 11, 412.	1.1	29
34	Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists. Sensors, 2021, 21, 3521.	2.1	3
35	Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker: Strategies Based on Virtual Mechanical Stiffness. Sensors, 2021, 21, 3242.	2.1	10
36	Expectations and Perceptions of Healthcare Professionals for Robot Deployment in Hospital Environments During the COVID-19 Pandemic. Frontiers in Robotics and AI, 2021, 8, 612746.	2.0	36

#	Article	IF	CITATIONS
37	A Survey on Socially Assistive Robotics: Clinicians' and Patients' Perception of a Social Robot within Gait Rehabilitation Therapies. Brain Sciences, 2021, 11, 738.	1.1	15
38	Machine Learning Approach for Fatigue Estimation in Sit-to-Stand Exercise. Sensors, 2021, 21, 5006.	2.1	17
39	A Data-Driven Approach to Physical Fatigue Management Using Wearable Sensors to Classify Four Diagnostic Fatigue States. Sensors, 2021, 21, 6401.	2.1	10
40	BCI-Based Control for Ankle Exoskeleton T-FLEX: Comparison of Visual and Haptic Stimuli with Stroke Survivors. Sensors, 2021, 21, 6431.	2.1	7
41	Experimental characterization of the T-FLEX ankle exoskeleton for gait assistance. Mechatronics, 2021, 78, 102608.	2.0	11
42	Physical Human-Robot Interaction Through Hugs with CASTOR Robot. Lecture Notes in Computer Science, 2021, , 814-818.	1.0	6
43	Editorial: Interfacing Humans and Machines for Rehabilitation and Assistive Devices. Frontiers in Robotics and AI, 2021, 8, 796431.	2.0	1
44	Assessment of a Robotic Walker in Older Adults With Parkinson's Disease in Daily Living Activities. Frontiers in Neurorobotics, 2021, 15, 742281.	1.6	2
45	Therapy with T-FLEX Ankle-Exoskeleton for Motor Recovery: A Case Study with a Stroke Survivor. , 2020, , .		11
46	An Open-Source Social Robot Based on Compliant Soft Robotics for Therapy with Children with ASD. Actuators, 2020, 9, 91.	1.2	19
47	Using a Personalised Socially Assistive Robot for Cardiac Rehabilitation: A Long-Term Case Study. , 2020, , .		10
48	Robot-Assisted Intervention for children with special needs: A comparative assessment for autism screening. Robotics and Autonomous Systems, 2020, 127, 103484.	3.0	25
49	Social Robots in Therapy and Care. Current Robotics Reports, 2020, 1, 59-74.	5.1	72
50	Affordable passive 3D-printed prosthesis for persons with partial hand amputation. Prosthetics and Orthotics International, 2020, 44, 92-98.	0.5	21
51	Social Human-Robot Interaction for Gait Rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1299-1307.	2.7	34
52	Technologies for Therapy and Assistance of Lower Limb Disabilities: Sit to Stand and Walking. SpringerBriefs in Applied Sciences and Technology, 2020, , 43-66.	0.2	5
53	Adaptable Robotic Platform for Gait Rehabilitation and Assistance: Design Concepts and Applications. SpringerBriefs in Applied Sciences and Technology, 2020, , 67-93.	0.2	8

54 Human-robot interaction for rehabilitation scenarios. , 2020, , 1-31.

9

#	Article	IF	CITATIONS
55	Technology and Environmental Supports in the Home and Community: An Interprofessional Project in BogotÃ _i , Colombia. American Journal of Occupational Therapy, 2020, 74, 7411510324p1-7411510324p1.	0.1	0
56	A Novel Multimodal Cognitive Interaction for Walker-Assisted Rehabilitation Therapies. , 2019, 2019, 905-910.		18
57	Feasibility study: Towards Estimation of Fatigue Level in Robot-Assisted Exercise for Cardiac Rehabilitation. , 2019, 2019, 911-916.		2
58	Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals. Sensors, 2019, 19, 2988.	2.1	62
59	Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker. Sensors, 2019, 19, 2897.	2.1	45
60	Expectation vs. Reality: Attitudes Towards a Socially Assistive Robot in Cardiac Rehabilitation. Applied Sciences (Switzerland), 2019, 9, 4651.	1.3	22
61	PREC 2019: Personal Robots for Exercising and Coaching. , 2019, , .		0
62	Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three different levels of gait assistance using the CPWalker. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 15.	2.4	25
63	Large-Range Polymer Optical-Fiber Strain-Gauge Sensor for Elastic Tendons in Wearable Assistive Robots. Materials, 2019, 12, 1443.	1.3	21
64	Remote-Operated Multimodal Interface for Therapists During Walker-Assisted Gait Rehabilitation: A Preliminary Assessment. , 2019, , .		6
65	Cloud Robotics Experimentation Testbeds: a Cloud-Based Navigation Case Study. , 2019, , .		7
66	Impedance-based Backdrivability Recovery of a Lower-limb Exoskeleton for Knee Rehabilitation. , 2019, , .		10
67	A Therapist Helping Hand for Walker-Assisted Gait Rehabilitation: A Pre-Clinical Assessment. , 2019, , .		5
68	T-FLEX: Variable Stiffness Ankle-Foot Orthosis for Gait Assistance. Biosystems and Biorobotics, 2019, , 160-164.	0.2	4
69	Social Assistive Robot for Cardiac Rehabilitation. , 2018, , .		6
70	PREC 2018. , 2018, , .		2
71	Architecture for a Social Assistive Robot in Cardiac Rehabilitation. , 2018, , .		6
72	Development of an Interface for Human-Robot Interaction on a Robotic Platform for Gait Assistance:		12

AGoRA Smart Walker., 2018,,.

12

#	Article	IF	CITATIONS
73	Development of a Robotic Lower-Limb Exoskeleton for Gait Rehabilitation: AGoRA Exoskeleton. , 2018, ,		26
74	Development and evaluation of a novel robotic platform for gait rehabilitation in patients with Cerebral Palsy: CPWalker. Robotics and Autonomous Systems, 2017, 91, 101-114.	3.0	54
75	BIOMECHANICAL COMPARISON OF PATIENTS WITH CP WITH DIFFERENT LEVELS OF GAIT ASSISTANCE USING CPWALKER. , 2017, , .		0
76	Lokomat therapy in Colombia: Current state and cognitive aspects. , 2017, 2017, 394-399.		11
77	Human-robot sensor interface for cardiac rehabilitation. , 2017, 2017, 1013-1018.		30
78	Bioinspired Hip Exoskeleton for Enhanced Physical Interaction. Biosystems and Biorobotics, 2017, , 1497-1501.	0.2	1
79	Implementation of a Shoulder and Elbow musculoskeletal model in musculoskeletal modelling and simulation software (MSMS). , 2016, , .		1
80	Human-Robot interaction strategy for overground rehabilitation in patients with Cerebral Palsy. , 2016, , .		3
81	Assistive Devices for Human Mobility and Gait Rehabilitation. Springer Tracts in Advanced Robotics, 2016, , 1-15.	0.3	5
82	Human-Robot Interaction for Assisting Human Locomotion. Springer Tracts in Advanced Robotics, 2016, , 17-31.	0.3	3
83	Development of a Cognitive HRI Strategy for Mobile Robot Control. Springer Tracts in Advanced Robotics, 2016, , 33-55.	0.3	2
84	Multimodal Interface for Human Mobility Assistance. Springer Tracts in Advanced Robotics, 2016, , 81-100.	0.3	0
85	Conclusions and Future Works. Springer Tracts in Advanced Robotics, 2016, , 101-105.	0.3	Ο
86	Human-Robot Interaction Strategies for Walker-Assisted Locomotion. Springer Tracts in Advanced Robotics, 2016, , .	0.3	24
87	Multimodal Human–Robot Interaction for Walker-Assisted Gait. IEEE Systems Journal, 2016, 10, 933-943.	2.9	47
88	Robot-Assisted Rehabilitation Therapy: Recovery Mechanisms and Their Implications for Machine Design. Biosystems and Biorobotics, 2016, , 197-223.	0.2	21
89	Smart Walkers: Advanced Robotic Human Walking-Aid Systems. Springer Tracts in Advanced Robotics, 2015, , 103-131.	0.3	13
90	Assessment of walker-assisted gait based on Principal Component Analysis and wireless inertial sensors. Revista Brasileira De Engenharia Biomedica, 2014, 30, 220-231.	0.3	4

8

#	Article	IF	CITATIONS
91	Pattern classification of brain tissues for navigation in telemedicine systems. , 2014, , .		0
92	Sensor fusion to control a robotic walker based on upper-limbs reaction forces and gait kinematics. , 2014, , .		6
93	Human-walker interaction on slopes based on LRF and IMU sensors. , 2014, , .		4
94	Human–robot interaction based on wearable IMU sensor and laser range finder. Robotics and Autonomous Systems, 2014, 62, 1425-1439.	3.0	57
95	ZigBee Wearable Sensor Development for Upper Limb Robotics Rehabilitation. IEEE Latin America Transactions, 2013, 11, 408-413.	1.2	6
96	Motor and bioelectric evaluation of human movements through inertial and myoelectric sensors. , 2013, , .		0
97	Evaluation of IMU ZigBee Sensors for Upper Limb Rehabilitation. Biosystems and Biorobotics, 2013, , 461-465.	0.2	7
98	Development of a wearable ZigBee sensor system for upper limb rehabilitation robotics. , 2012, , .		28
99	An approach to telemedicine intelligent, through web mining and instrumentation wearable. , 2011, , .		3

100 Development of a Zigbee platform for bioinstrumentation. , 2010, 2010, 390-3.