Yumin Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5717823/publications.pdf Version: 2024-02-01

ΥΠΜΙΝΙ Μ/Π

#	Article	IF	CITATIONS
1	Cephalopods-inspired Repairable MWCNTs/PDMS Conductive Elastomers for Sensitive Strain Sensor. Chinese Journal of Polymer Science (English Edition), 2022, 40, 384-393.	3.8	14
2	Robust and ultra-fast self-healing elastomers with hierarchically anisotropic structures and used for wearable sensors. Chemical Engineering Journal, 2022, 446, 137305.	12.7	14
3	<scp>d</scp> -Amino Acid-Based Antifouling Peptides for the Construction of Electrochemical Biosensors Capable of Assaying Proteins in Serum with Enhanced Stability. ACS Sensors, 2022, 7, 1740-1746.	7.8	14
4	A silsesquioxane-based flexible polyimide aerogel with high hydrophobicity and good adsorption for liquid pollutants in wastewater. Journal of Materials Science, 2021, 56, 3576-3588.	3.7	9
5	A fast self-healable and stretchable conductor based on hierarchical wrinkled structure for flexible electronics. Composites Science and Technology, 2021, 211, 108834.	7.8	23
6	Biomimetic structure of chitosan reinforced epoxy natural rubber with self-healed, recyclable and antimicrobial ability. International Journal of Biological Macromolecules, 2021, 184, 9-19.	7.5	23
7	Stabilizing a Si Anode via an Inorganic Oligomer Binder Enabled by Robust Polar Interfacial Interactions. ACS Applied Materials & Interfaces, 2021, 13, 44312-44320.	8.0	17
8	An electrochemical biosensor for alpha-fetoprotein detection in human serum based on peptides containing isomer D-Amino acids with enhanced stability and antifouling property. Biosensors and Bioelectronics, 2021, 190, 113466.	10.1	30
9	A NIR laser induced self-healing PDMS/Gold nanoparticles conductive elastomer for wearable sensor. Journal of Colloid and Interface Science, 2021, 599, 360-369.	9.4	32
10	Quantitative structure property relationship for relative volatility of isopropanol and water mixture. Separation Science and Technology, 2020, 55, 3252-3259.	2.5	3
11	High-Strength, Fast Self-Healing, Aging-Insensitive Elastomers with Shape Memory Effect. ACS Applied Materials & Interfaces, 2020, 12, 35445-35452.	8.0	35
12	A stretchable and self-healable organosilicon conductive nanocomposite for a reliable and sensitive strain sensor. Journal of Materials Chemistry C, 2020, 8, 17277-17288.	5.5	19
13	Self-Healing Ti ₃ C ₂ MXene/PDMS Supramolecular Elastomers Based on Small Biomolecules Modification for Wearable Sensors. ACS Applied Materials & Interfaces, 2020, 12, 45306-45314.	8.0	104
14	Mechanism Analysis, Economic Optimization, and Environmental Assessment of Hybrid Extractive Distillation–Pervaporation Processes for Dehydration of <i>n</i> -Propanol. ACS Sustainable Chemistry and Engineering, 2020, 8, 4561-4571.	6.7	40
15	A Type of Hydrogen Bond Cross-Linked Silicone Rubber with the Thermal-Induced Self-Healing Properties Based on the Nonisocyanate Reaction. Industrial & Engineering Chemistry Research, 2019, 58, 21452-21458.	3.7	33
16	Open-Cell Rigid Polyurethane Foams from Peanut Shell-Derived Polyols Prepared under Different Post-Processing Conditions. Polymers, 2019, 11, 1392.	4.5	12
17	Application of a bioâ€based polyester plasticizer modified by hydrosiliconâ€hydrogenation reaction in soft PVC films. Polymers for Advanced Technologies, 2019, 30, 1126-1134.	3.2	25
18	Heteroatom (Nitrogen/Sulfur)-Doped Graphene as an Efficient Electrocatalyst for Oxygen Reduction and Evolution Reactions. Catalysts, 2018, 8, 475.	3.5	16

Yumin Wu

#	Article	IF	CITATIONS
19	A new crossâ€linked system of silicone rubber based on siliconeâ€polyurea block copolymer. Polymers for Advanced Technologies, 2018, 29, 2064-2071.	3.2	7
20	A type of thiophene-bridged silica aerogel with a high adsorption capacity for organic solvents and oil pollutants. Inorganic Chemistry Frontiers, 2018, 5, 1894-1901.	6.0	10
21	Thermal, Crystallographic, and Mechanical Properties of Poly(butylene succinate)/Magnesium Hydroxide Sulfate Hydrate Whisker Composites Modified by in Situ Polymerization. Industrial & Engineering Chemistry Research, 2017, 56, 3516-3526.	3.7	20
22	Mixed Self-Assembled Aptamer and Newly Designed Zwitterionic Peptide as Antifouling Biosensing Interface for Electrochemical Detection of alpha-Fetoprotein. ACS Sensors, 2017, 2, 490-494.	7.8	130
23	Effect of auxiliary blowing agents on properties of rigid polyurethane foams based on liquefied products from peanut shell. Journal of Applied Polymer Science, 2017, 134, 45582.	2.6	12
24	Itaconic Acid Based Surfactants: I. Synthesis and Characterization of Sodium <i>n</i> â€Octyl Sulfoitaconate Diester Anionic Surfactant. Journal of Surfactants and Detergents, 2016, 19, 373-379.	2.1	6
25	Renewable chemical feedstocks from peanut shell liquefaction: Preparation and characterization of liquefied products and residue. Journal of Applied Polymer Science, 2016, 133, .	2.6	6
26	Calcium sulfate hemihydrate whisker reinforced polyvinyl alcohol with improved shape memory effect. RSC Advances, 2016, 6, 52982-52986.	3.6	16
27	A highly sensitive biosensor for tumor maker alpha fetoprotein based on poly(ethylene glycol) doped conducting polymer PEDOT. Biosensors and Bioelectronics, 2016, 79, 736-741.	10.1	107
28	Synthesis and characterization of waterborne polyurethane emulsions based on poly(butylene) Tj ETQq0 0 0 rgBT	/Oyerlock 1.0	10 Tf 50 38 15
29	Controlling the morphology of calcium sulfate hemihydrate using aluminum chloride as a habit modifier. New Journal of Chemistry, 2016, 40, 3104-3108.	2.8	22
30	Synthesis of calcium sulfate hemihydrate whiskers using oyster shells. Research on Chemical Intermediates, 2016, 42, 2953-2961.	2.7	8
31	Optimization of synthesis and characterization of oxidized starchâ€graftâ€poly(styreneâ€butyl acrylate) latex for paper coating. Starch/Staerke, 2015, 67, 493-501.	2.1	15
32	Molecularly imprinted electrochemical sensor for propyl gallate based on PtAu bimetallic nanoparticles modified graphene–carbon nanotube composites. Biosensors and Bioelectronics, 2015, 68, 563-569.	10.1	91
33	Synthesis of DOPO-based spiroorthocarbonate and its application in epoxy resin. Designed Monomers and Polymers, 2015, 18, 690-697.	1.6	9
34	Preparation and Characterization of Enzymatically Degraded Starch-g-Poly(styrene-co-butyl acrylate) Latex for Paper Coating. Polymer-Plastics Technology and Engineering, 2014, 53, 1811-1816.	1.9	14
35	Application of Poly(butylenes 2-methylsuccinate) as Migration Resistant Plasticizer for Poly(vinyl) Tj ETQq1 1 0.78	4314 rgBT 1.9	Qverlock

Preparation and characterization of oxidized starch-graft-poly(styrene-butyl acrylate) latex via emulsion polymerization. Journal of Polymer Engineering, 2014, 34, 611-616.

1.4 12

Yumin Wu

#	Article	IF	CITATIONS
37	Synthesis of Copolymers Containing Double Spiro Orthocarbonate and Used as Anti-shrinkage Additives in Epoxy Resin Composite. Polymer-Plastics Technology and Engineering, 2014, 53, 753-759.	1.9	7
38	Evaluation of the properties of bitumen modified by SBS copolymers with different styrene–butadiene structure. Journal of Applied Polymer Science, 2014, 131, .	2.6	24
39	Synthesis and characterization of a novel aliphatic polyester based on itaconic acid. Polymer Engineering and Science, 2014, 54, 2515-2521.	3.1	17
40	Reverse Atom Transfer Radical Emulsion Polymerization of Styrene and Butyl Acrylate Catalyzed by Iron Complexes. Advances in Polymer Technology, 2013, 32, .	1.7	7
41	Dispersion polymerization of acrylamide with waterâ€soluble chitosan as the stabilizer. Journal of Applied Polymer Science, 2012, 125, E518.	2.6	6
42	Emulsion copolymerization of styrene and butyl acrylate by reverse atom transfer radical polymerization. Journal of Applied Polymer Science, 2012, 126, 1152-1158.	2.6	4
43	Swelling properties of particles in amphoteric polyacrylamide dispersion. Chemical Papers, 2011, 65, .	2.2	3
44	Synthesis and Characterization of Sodium Nonylphenol Ethoxylate(10) Sulfoitaconate Esters. Journal of Surfactants and Detergents, 2011, 14, 43-49.	2.1	6
45	Preparation and properties of amphoteric polyacrylamide by seeded dispersion polymerization in ammonium sulfate solution. Polymer Engineering and Science, 2011, 51, 1742-1748.	3.1	9
46	Aqueous dispersion polymerization of amphoteric polyacrylamide. Journal of Applied Polymer Science, 2010, 115, 1131-1137.	2.6	23
47	Dispersion polymerization of acrylamide with 2-acrylamide-2-methyl-1-propane sulfonate in aqueous solution of sodium sulfate. Journal of Polymer Research, 2009, 16, 569-575.	2.4	21
48	Aqueous photo-polymerization of cationic polyacrylamide with hybrid photo-initiators. Journal of Polymer Research, 2009, 16, 647-653.	2.4	28
49	Morphologies and applied properties of PSI/PA composite particles synthesized at low temperature. Polymer Composites, 2008, 29, 1193-1198.	4.6	5
50	Emulsifier-minor emulsion copolymerization of BA-MMA-St-MAA (or AA)-N-MA. Journal of Applied Polymer Science, 2004, 92, 2923-2929.	2.6	10