List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5717613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contribution of hydrogen bonding to liquid-phase adsorptive removal of hazardous organics with metal-organic framework-based materials. Chemical Engineering Journal, 2022, 430, 132596.	6.6	79
2	Adsorptive removal of herbicides with similar structures from water over nitrogen-enriched carbon, derived from melamine@metal-azolate framework-6. Environmental Research, 2022, 204, 111991.	3.7	7
3	Oxidative modification of metal-organic framework-derived carbon: An effective strategy for adsorptive elimination of carbazole and benzonitrile. Fuel, 2022, 307, 121764.	3.4	16
4	Recent research trends in voltammetric sensing platforms for hormones and their applications to human serum analyses. Analytical Sciences, 2022, 38, 11-21.	0.8	5
5	Metal-organic frameworks bearing free carboxylic acids: Preparation, modification, and applications. Coordination Chemistry Reviews, 2022, 450, 214237.	9.5	66
6	A remarkable adsorbent for denitrogenation of liquid fuel: Ethylenediaminetetraacetic acid-grafted metal–organic framework, MOF-808. Separation and Purification Technology, 2022, 284, 120248.	3.9	14
7	Removal of benzonitrile and carbazole from model green-diesel derived from microalgae using metal-organic frameworks with protonated amines. Chemical Engineering Journal, 2022, 435, 134910.	6.6	8
8	Selective CO ₂ adsorption at low pressure with a Zr-based UiO-67 metal–organic framework functionalized with aminosilanes. Journal of Materials Chemistry A, 2022, 10, 8856-8865.	5.2	29
9	Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to capture CO2 under low pressure. Journal of CO2 Utilization, 2022, 58, 101932.	3.3	36
10	Covalent-organic polymer-derived carbons: An effective adsorbent to remove sulfonamide antibiotics from water. Chemical Engineering Journal, 2022, 437, 135386.	6.6	21
11	Enhanced oxidative desulfurization of liquid model fuel under microwave irradiation over W2N@C catalyst nanoarchitectonics. Chemical Engineering Journal, 2022, 440, 135841.	6.6	18
12	Nanoarchitectonics of polyaniline-derived porous carbons for efficient adsorptive denitrogenation of liquid fuel. Fuel, 2022, 320, 123970.	3.4	6
13	Enhancing the oxidative desulfurization efficiency of cobalt-loaded-porous carbon catalyst via nitrogen doping on carbon support. Journal of Cleaner Production, 2022, 360, 132168.	4.6	19
14	Functionalized metal-organic framework-derived carbon: Effective adsorbent to eliminate methylene blue, a small cationic dye from water. Chemosphere, 2022, 303, 134890.	4.2	11
15	Adsorptive removal of hazardous organics from water and fuel with functionalized metal-organic frameworks: Contribution of functional groups. Journal of Hazardous Materials, 2021, 403, 123655.	6.5	109
16	A remarkable adsorbent for removal of nitrogenous compounds from fuel: A metal–organic framework functionalized both on metal and ligand. Chemical Engineering Journal, 2021, 404, 126491.	6.6	29
17	Melamine/polyaniline-derived carbons with record-high adsorption capacities for effective removal of phenolic compounds from water. Chemical Engineering Journal, 2021, 420, 127627.	6.6	30
18	Remarkable adsorbent for removal of bisphenol A and S from water: Porous carbon derived from melamine/polyaniline. Chemosphere, 2021, 268, 129342.	4.2	22

#	Article	IF	CITATIONS
19	Application of Metalâ€Organic Frameworks in Adsorptive Removal of Organic Contaminants from Water, Fuel and Air. Chemistry - an Asian Journal, 2021, 16, 185-196.	1.7	31
20	Conversion of Y into SSZ-13 zeolite, in the absence of extra silica, alumina and seed crystals, with N,N,N-dimethylethylcyclohexylammonium bromide, and application of the SSZ-13 zeolite in the propylene production from ethylene. Catalysis Today, 2021, 375, 94-100.	2.2	10
21	Adsorptive Purification of Water Contaminated with Hazardous Organics by Using Functionalized Metal-Organic Frameworks. , 2021, , 269-290.		0
22	How neutral nitrogen-containing compounds are oxidized in oxidative-denitrogenation of liquid fuel with TiO ₂ @carbon. Physical Chemistry Chemical Physics, 2021, 23, 8368-8374.	1.3	4
23	Particulate matters removal by using cotton coated with isomeric metal-organic frameworks (MOFs): Effect of voidage of MOFs on removal. Journal of Industrial and Engineering Chemistry, 2021, 95, 277-285.	2.9	13
24	Zirconium-containing metal organic frameworks as solid acid catalysts for the N-formylation of aniline with formic acid. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 355-369.	0.8	6
25	Effective CO2 adsorption at low pressure over nitrogen-enriched porous carbons, derived from melamine-loaded polyaniline. Chemical Engineering Journal, 2021, 412, 128641.	6.6	29
26	lonic Salts@Metal–Organic Frameworks: Remarkable Component to Improve Performance of Fabric Filters to Remove Particulate Matters from Air. ACS Applied Materials & Interfaces, 2021, 13, 23092-23102.	4.0	10
27	Oxidative denitrogenation of liquid fuel over W2N@carbon catalyst derived from a phosphotungstinic acid encapsulated metal–azolate framework. Applied Catalysis B: Environmental, 2021, 285, 119842.	10.8	31
28	Molybdenum nitride@porous carbon, derived from phosphomolybdic acid loaded metal-azolate framework-6: A highly effective catalyst for oxidative desulfurization. Applied Catalysis B: Environmental, 2021, 288, 119988.	10.8	70
29	Removal of Particulate Matters by Using Zeolitic Imidazolate Framework-8s (ZIF-8s) Coated onto Cotton: Effect of the Pore Size of ZIF-8s on Removal. ACS Applied Materials & Interfaces, 2021, 13, 35214-35222.	4.0	14
30	Metal–organic frameworks containing uncoordinated nitrogen: Preparation, modification, and application in adsorption. Materials Today, 2021, 51, 566-585.	8.3	50
31	Covalent organic framework-based materials: Synthesis, modification, and application in environmental remediation. Coordination Chemistry Reviews, 2021, 441, 213989.	9.5	91
32	Effect of MAF-6 Crystal Size on Its Physicochemical and Catalytic Properties in the Cycloaddition of CO2 to Propylene Oxide. Catalysts, 2021, 11, 1061.	1.6	19
33	Oxidative desulfurization of liquid fuel with tungsten-nitride@porous carbon, derived from MAF-6(Zn) loaded with phosphotungstic acid and melamine. Chemical Engineering Journal, 2021, 419, 129485.	6.6	34
34	Adsorptive removal of pesticides from water with metal–organic framework-based materials. Chemical Engineering Journal, 2021, 421, 129688.	6.6	92
35	Adsorptive removal of nitro- or sulfonate-containing dyes by a functional metal–organic framework: Quantitative contribution of hydrogen bonding. Chemical Engineering Journal, 2021, 425, 130598.	6.6	33
36	Fluorescent paper strip immunoassay with carbon nanodots@silica for determination of human serum amyloid A1. Mikrochimica Acta, 2021, 188, 386.	2.5	7

#	Article	IF	CITATIONS
37	A Tb-based-metal–organic framework prepared under ultrasound for detection of organic amines in aqueous solution through fluorescence quenching. Journal of Molecular Liquids, 2021, 344, 117765.	2.3	12
38	Synthesis of Erythrulose from Dihydroxyacetone and Formaldehyde Using Zinc Zeolitic Imidazolate Frameworks. Catalysis in Industry, 2021, 13, 395-402.	0.3	2
39	Tungsten Nitride, Wellâ€Dispersed on Porous Carbon: Remarkable Catalyst, Produced without Addition of Ammonia, for the Oxidative Desulfurization of Liquid Fuel. Small, 2020, 16, e1901564.	5.2	38
40	Cu2O-incorporated MAF-6-derived highly porous carbons for the adsorptive denitrogenation of liquid fuel. Chemical Engineering Journal, 2020, 381, 122675.	6.6	25
41	Metal-organic framework MIL-101 loaded with polymethacrylamide with or without further reduction: Effective and selective CO2 adsorption with amino or amide functionality. Chemical Engineering Journal, 2020, 380, 122496.	6.6	68
42	Adsorptive purification of organic contaminants of emerging concern from water with metal–organic frameworks. , 2020, , 47-92.		2
43	Polyvinylamine-loaded metal–organic framework MIL-101 for effective and selective CO2 adsorption under atmospheric or lower pressure. Chemical Engineering Journal, 2020, 389, 123429.	6.6	50
44	Carbon-derived from metal-organic framework MOF-74: A remarkable adsorbent to remove a wide range of contaminants of emerging concern from water. Applied Surface Science, 2020, 504, 144348.	3.1	44
45	Selective CO2 adsorption over functionalized Zr-based metal organic framework under atmospheric or lower pressure: Contribution of functional groups to adsorption. Chemical Engineering Journal, 2020, 402, 126254.	6.6	58
46	Removal of nitrogen-containing compounds from microalgae derived biofuel by adsorption over functionalized metal organic frameworks. Fuel, 2020, 280, 118622.	3.4	31
47	Effective removal of particulate matter from air by using zeolite-coated filters. Journal of Materials Chemistry A, 2020, 8, 17960-17968.	5.2	10
48	Removal of particulate matter with metal–organic framework-incorporated materials. Coordination Chemistry Reviews, 2020, 422, 213477.	9.5	66
49	CO2 adsorption at low pressure over polymers-loaded mesoporous metal organic framework PCN-777: effect of basic site and porosity on adsorption. Journal of CO2 Utilization, 2020, 42, 101332.	3.3	14
50	Polyaniline-derived carbons: Remarkable adsorbents to remove atrazine and diuron herbicides from water. Journal of Hazardous Materials, 2020, 396, 122624.	6.5	15
51	Highly Improved Performance of Cotton Air Filters in Particulate Matter Removal by the Incorporation of Metal–Organic Frameworks with Functional Groups Capable of Large Charge Separation. ACS Applied Materials & Interfaces, 2020, 12, 28885-28893.	4.0	48
52	Removal of Particulate Matters with Isostructural Zr-Based Metal–Organic Frameworks Coated on Cotton: Effect of Porosity of Coated MOFs on Removal. ACS Applied Materials & Interfaces, 2020, 12, 34423-34431.	4.0	26
53	Adsorptive removal of nitrogenous compounds from microalgae-derived bio-oil using metal-organic frameworks with an amino group. Chemical Engineering Journal, 2020, 388, 124195.	6.6	25
54	A remarkable adsorbent for removal of bisphenol S from water: Aminated metal-organic framework, MIL-101-NH2. Chemical Engineering Journal, 2020, 396, 125224.	6.6	63

#	Article	IF	CITATIONS
55	Adsorptive removal of bulky dye molecules from water with mesoporous polyaniline-derived carbon. Beilstein Journal of Nanotechnology, 2020, 11, 597-605.	1.5	10
56	Remarkable metal–organic framework composites for adsorptive removal of nitrogenous compounds from fuel. Chemical Engineering Journal, 2020, 398, 125590.	6.6	9
57	Preparation of SSZ-13 zeolites from beta zeolite and their application in the conversion of ethylene to propylene. Chemical Engineering Journal, 2019, 377, 119546.	6.6	23
58	Oxidative desulfurization and denitrogenation of fuels using metal-organic framework-based/-derived catalysts. Applied Catalysis B: Environmental, 2019, 259, 118021.	10.8	170
59	Zr-MOF with free carboxylic acid for storage and controlled release of caffeine. Journal of Molecular Liquids, 2019, 296, 112060.	2.3	24
60	Phytic acid-encapsulated MIL-101(Cr): Remarkable adsorbent for the removal of both neutral indole and basic quinoline from model liquid fuel. Chemical Engineering Journal, 2019, 375, 121948.	6.6	18
61	Co supported on N-doped carbon, derived from bimetallic azolate framework-6: a highly effective oxidative desulfurization catalyst. Journal of Materials Chemistry A, 2019, 7, 17823-17833.	5.2	55
62	Synthesis and Functionalization of Porous Zr-Diaminostilbenedicarboxylate Metal–Organic Framework for Storage and Stable Delivery of Ibuprofen. ACS Omega, 2019, 4, 9860-9867.	1.6	28
63	Zeolitic Imidazolate Frameworks ZIF-8 and MAF-5 as Highly Efficient Heterogeneous Catalysts for Synthesis of 1-Methoxy-2-propanol from Methanol and Propylene Oxide. Industrial & Engineering Chemistry Research, 2019, 58, 10750-10758.	1.8	23
64	Adsorptive removal of nitroimidazole antibiotics from water using porous carbons derived from melamine-loaded MAF-6. Journal of Hazardous Materials, 2019, 378, 120761.	6.5	32
65	Water adsorption/desorption over metal-organic frameworks with ammonium group for possible application in adsorption heat transformation. Chemical Engineering Journal, 2019, 373, 1064-1071.	6.6	46
66	Metal-Organic Frameworks for Nanoarchitectures: Nanoparticle, Composite, Core-Shell, Hierarchical, and Hollow Structures. , 2019, , 151-194.		1
67	Functionalized mesoporous metal-organic framework PCN-100: An efficient carrier for vitamin E storage and delivery. Journal of Industrial and Engineering Chemistry, 2019, 74, 158-163.	2.9	18
68	Mesoporous metal-organic framework PCN-222(Fe): Promising adsorbent for removal of big anionic and cationic dyes from water. Chemical Engineering Journal, 2019, 371, 252-259.	6.6	109
69	Metal-organic framework with various functional groups: Remarkable adsorbent for removal of both neutral indole and basic quinoline from liquid fuel. Chemical Engineering Journal, 2019, 370, 1467-1473.	6.6	37
70	Effect of Functional Groups of Metal–Organic Frameworks, Coated on Cotton, on Removal of Particulate Matters via Selective Interactions. ACS Applied Materials & Interfaces, 2019, 11, 47649-47657.	4.0	33
71	Oxidative denitrogenation with TiO2@porous carbon catalyst for purification of fuel: Chemical aspects. Applied Catalysis B: Environmental, 2019, 240, 215-224.	10.8	43
72	TiO ₂ -Integrated Carbon Prepared via Pyrolysis of Ti-Loaded Metal–Organic Frameworks for Redox Catalysis. ACS Applied Nano Materials, 2019, 2, 191-201.	2.4	17

#	Article	IF	CITATIONS
73	MOF-derived carbonaceous materials enriched with nitrogen: Preparation and applications in adsorption and catalysis. Materials Today, 2019, 25, 88-111.	8.3	180
74	Synthesis of SSZ-13 zeolite in the presence of dimethylethylcyclohexyl ammonium ion and direct conversion of ethylene to propylene with the SSZ-13. Chemical Engineering Journal, 2019, 377, 120116.	6.6	16
75	Remarkably efficient adsorbent for the removal of bisphenol A from water: Bio-MOF-1-derived porous carbon. Chemical Engineering Journal, 2018, 343, 225-234.	6.6	122
76	Adsorptive Removal of Indole and Quinoline from Model Fuel over Various UiO-66s: Quantitative Contributions of H-Bonding and Acid–Base Interactions to Adsorption. Journal of Physical Chemistry C, 2018, 122, 4532-4539.	1.5	58
77	Nitrogen-doped porous carbon from ionic liquid@Al-metal-organic framework: A prominent adsorbent for purification of both aqueous and non-aqueous solutions. Chemical Engineering Journal, 2018, 338, 107-116.	6.6	67
78	Adsorptive removal of wide range of pharmaceuticals and personal care products from water using bio-MOF-1 derived porous carbon. Microporous and Mesoporous Materials, 2018, 270, 102-108.	2.2	68
79	Adsorptive removal of wide range of pharmaceutical and personal care products from water by using metal azolate framework-6-derived porous carbon. Chemical Engineering Journal, 2018, 343, 447-454.	6.6	134
80	Metal-organic framework-derived carbons: Preparation from ZIF-8 and application in the adsorptive removal of sulfamethoxazole from water. Catalysis Today, 2018, 301, 90-97.	2.2	137
81	Adsorptive removal of artificial sweeteners from water using porous carbons derived from metal azolate framework-6. Microporous and Mesoporous Materials, 2018, 260, 1-8.	2.2	51
82	Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites. Chemical Engineering Journal, 2018, 335, 74-81.	6.6	127
83	Adsorptive removal of indole and quinoline from model fuel using adenine-grafted metal-organic frameworks. Journal of Hazardous Materials, 2018, 344, 593-601.	6.5	62
84	Selective and stable production of ethylene from propylene over surface-modified ZSM-5 zeolites. Catalysis Today, 2018, 303, 86-92.	2.2	13
85	Heteropoly acid-loaded ionic liquid@metal-organic frameworks: Effective and reusable adsorbents for the desulfurization of a liquid model fuel. Chemical Engineering Journal, 2018, 334, 2215-2221.	6.6	92
86	Adsorptive removal of aromatic hydrocarbons from water over metal azolate framework-6-derived carbons. Journal of Hazardous Materials, 2018, 344, 1069-1077.	6.5	62
87	Carboxylic-acid-functionalized UiO-66-NH2: A promising adsorbent for both aqueous- and non-aqueous-phase adsorptions. Chemical Engineering Journal, 2018, 331, 124-131.	6.6	164
88	Polyaniline-Encapsulated Metal–Organic Framework MIL-101: Adsorbent with Record-High Adsorption Capacity for the Removal of Both Basic Quinoline and Neutral Indole from Liquid Fuel. ACS Applied Materials & Interfaces, 2018, 10, 35639-35646.	4.0	50
89	Polyaniline-loaded metal-organic framework MIL-101(Cr): Promising adsorbent for CO2 capture with increased capacity and selectivity by polyaniline introduction. Journal of CO2 Utilization, 2018, 28, 319-325.	3.3	47
90	Record-high adsorption capacities of polyaniline-derived porous carbons for the removal of personal care products from water. Chemical Engineering Journal, 2018, 352, 71-78.	6.6	41

#	Article	IF	CITATIONS
91	Conversion of ethylene into propylene with the siliceous SSZ-13 zeolite prepared without an organic structure-directing agent. Journal of Catalysis, 2018, 365, 94-104.	3.1	24
92	Iron Phosphide Incorporated into Ironâ€Treated Heteroatomsâ€Doped Porous Bioâ€Carbon as Efficient Electrocatalyst for the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 1944-1953.	1.7	28
93	Polyaniline-derived porous carbons: Remarkable adsorbent for removal of various hazardous organics from both aqueous and non-aqueous media. Journal of Hazardous Materials, 2018, 360, 163-171.	6.5	49
94	Beyond pristine metal-organic frameworks: Preparation and application of nanostructured, nanosized, and analogous MOFs. Coordination Chemistry Reviews, 2018, 376, 20-45.	9.5	121
95	Well-dispersed Ni or MnO nanoparticles on mesoporous carbons: preparation <i>via</i> carbonization of bimetallic MOF-74s for highly reactive redox catalysts. Nanoscale, 2018, 10, 15035-15047.	2.8	43
96	Removal of nitroimidazole antibiotics from water by adsorption over metal–organic frameworks modified with urea or melamine. Chemical Engineering Journal, 2017, 315, 92-100.	6.6	186
97	Nitrogen-Doped Porous Carbons from Ionic Liquids@MOF: Remarkable Adsorbents for Both Aqueous and Nonaqueous Media. ACS Applied Materials & Interfaces, 2017, 9, 10276-10285.	4.0	133
98	Contribution of H-bond in adsorptive removal of pharmaceutical and personal care products from water using oxidized activated carbon. Microporous and Mesoporous Materials, 2017, 243, 221-228.	2.2	83
99	Adsorptive removal of herbicides from water over nitrogen-doped carbon obtained from ionic liquid@ZIF-8. Chemical Engineering Journal, 2017, 323, 203-211.	6.6	112
100	Adsorption of organic arsenic acids from water over functionalized metal-organic frameworks. Journal of Hazardous Materials, 2017, 335, 162-169.	6.5	128
101	Controlling size and acidity of SAPO-34 catalyst for efficient ethylene to propylene transformation. Molecular Catalysis, 2017, 438, 86-92.	1.0	30
102	Adsorptive Denitrogenation of Model Fuel with CuCl-Loaded Adsorbents: Contribution of Î-Complexation and Direct Interaction between Adsorbates and Cuprous Ions. Journal of Physical Chemistry C, 2017, 121, 11601-11608.	1.5	20
103	Protonated MIL-125-NH ₂ : Remarkable Adsorbent for the Removal of Quinoline and Indole from Liquid Fuel. ACS Applied Materials & amp; Interfaces, 2017, 9, 20938-20946.	4.0	69
104	Conversion of Y into SSZ-13 zeolite in the presence of tetraethylammonium hydroxide and ethylene-to-propylene reactions over SSZ-13 zeolites. Catalysis Today, 2017, 298, 53-60.	2.2	39
105	Adsorption of pharmaceuticals and personal care products over metal-organic frameworks functionalized with hydroxyl groups: Quantitative analyses of H-bonding in adsorption. Chemical Engineering Journal, 2017, 322, 366-374.	6.6	204
106	Adsorptive denitrogenation of model fuel by functionalized UiO-66 with acidic and basic moieties. Chemical Engineering Journal, 2017, 321, 40-47.	6.6	61
107	Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbon. Chemical Engineering Journal, 2017, 314, 50-58.	6.6	310
108	Tandem Femto- and Nanomolar Analysis of Two Protein Biomarkers in Plasma on a Single Mixed Antibody Monolayer Surface Using Surface Plasmon Resonance. Analytical Chemistry, 2017, 89, 12562-12568.	3.2	14

#	Article	IF	CITATIONS
109	TiO ₂ -Containing Carbon Derived from a Metal–Organic Framework Composite: A Highly Active Catalyst for Oxidative Desulfurization. ACS Applied Materials & Interfaces, 2017, 9, 31192-31202.	4.0	110
110	Metal organic framework derived mesoporous carbon nitrides with a high specific surface area and chromium oxide nanoparticles for CO ₂ and hydrogen adsorption. Journal of Materials Chemistry A, 2017, 5, 21542-21549.	5.2	45
111	Metal-organic frameworks as efficient catalytic systems for the synthesis of 1,5-benzodiazepines from 1,2-phenylenediamine and ketones. Journal of Catalysis, 2017, 354, 128-137.	3.1	20
112	A remarkable adsorbent for removal of contaminants of emerging concern from water: Porous carbon derived from metal azolate framework-6. Journal of Hazardous Materials, 2017, 340, 179-188.	6.5	88
113	lron-containing materials as catalysts for the synthesis of 1,5-benzodiazepine from 1,2-phenylenediamine and acetone. Reaction Kinetics, Mechanisms and Catalysis, 2017, 121, 689-699.	0.8	11
114	Applications of metal-organic frameworks in adsorption/separation processes via hydrogen bonding interactions. Chemical Engineering Journal, 2017, 310, 197-215.	6.6	370
115	lsostructural metal-carboxylates MIL-100(M) and MIL-53(M) (M: V, Al, Fe and Cr) as catalysts for condensation of glycerol with acetone. Applied Catalysis A: General, 2017, 529, 167-174.	2.2	67
116	Adsorptive desulfurization using Cu–Ce/metal–organic framework: Improved performance based on synergy between Cu and Ce. Chemical Engineering Journal, 2017, 311, 20-27.	6.6	89
117	Adsorption of benzotriazole and benzimidazole from water over a Co-based metal azolate framework MAF-5(Co). Journal of Hazardous Materials, 2017, 324, 131-138.	6.5	110
118	Adsorptive removal and separation of chemicals with metal-organic frameworks: Contribution of Ï€-complexation. Journal of Hazardous Materials, 2017, 325, 198-213.	6.5	245
119	Acid-base properties and catalytic activity of metal-organic frameworks: A view from spectroscopic and semiempirical methods. Catalysis Reviews - Science and Engineering, 2016, 58, 209-307.	5.7	43
120	Selective Adsorption of <i>n</i> -Alkanes from <i>n</i> -Octane on Metal-Organic Frameworks: Length Selectivity. ACS Applied Materials & Interfaces, 2016, 8, 6770-6777.	4.0	38
121	Adsorption of diclofenac sodium from water using oxidized activated carbon. Chemical Engineering Journal, 2016, 301, 27-34.	6.6	282
122	Adsorption of indole and quinoline from a model fuel on functionalized MIL-101: effects of H-bonding and coordination. Physical Chemistry Chemical Physics, 2016, 18, 14787-14794.	1.3	52
123	Adsorptive removal of nitrogen-containing compounds from a model fuel using a metal–organic framework having a free carboxylic acid group. Chemical Engineering Journal, 2016, 299, 236-243.	6.6	65
124	UiO-66-Type Metal–Organic Framework with Free Carboxylic Acid: Versatile Adsorbents via H-bond for Both Aqueous and Nonaqueous Phases. ACS Applied Materials & Interfaces, 2016, 8, 27394-27402.	4.0	112
125	Syntheses of SSZ-39 and mordenite zeolites with N,N-dialkyl-2,6-dimethyl-piperidinium hydroxide/iodides: Phase-selective syntheses with anions. Microporous and Mesoporous Materials, 2016, 235, 135-142.	2.2	21
126	Pressure-Dependent Structural and Chemical Changes in a Metal–Organic Framework with One-Dimensional Pore Structure. Chemistry of Materials, 2016, 28, 5336-5341.	3.2	25

#	Article	IF	CITATIONS
127	Adsorptive Removal of Artificial Sweeteners from Water Using Metal–Organic Frameworks Functionalized with Urea or Melamine. ACS Applied Materials & Interfaces, 2016, 8, 29799-29807.	4.0	85
128	Adsorptive Removal of Pharmaceuticals and Personal Care Products from Water with Functionalized Metal-organic Frameworks: Remarkable Adsorbents with Hydrogen-bonding Abilities. Scientific Reports, 2016, 6, 34462.	1.6	187
129	Hydrophobic Cobalt-Ethylimidazolate Frameworks: Phase-Pure Syntheses and Possible Application in Cleaning of Contaminated Water. Inorganic Chemistry, 2016, 55, 11362-11371.	1.9	58
130	Enhanced adsorptive desulfurization with flexible metal–organic frameworks in the presence of diethyl ether and water. Chemical Communications, 2016, 52, 8667-8670.	2.2	32
131	Remarkable adsorptive removal of nitrogen-containing compounds from a model fuel by a graphene oxide/MIL-101 composite through a combined effect of improved porosity and hydrogen bonding. Journal of Hazardous Materials, 2016, 314, 318-325.	6.5	70
132	Conversion of Y into SSZ-13 zeolites and ethylene-to-propylene reactions over the obtained SSZ-13 zeolites. Chemical Engineering Journal, 2016, 303, 667-674.	6.6	52
133	Remarkable adsorbent for phenol removal from fuel: Functionalized metal–organic framework. Fuel, 2016, 174, 43-48.	3.4	79
134	Adsorption of Nitrogen-Containing Compounds from Model Fuel over Sulfonated Metal–Organic Framework: Contribution of Hydrogen-Bonding and Acid–Base Interactions in Adsorption. Journal of Physical Chemistry C, 2016, 120, 407-415.	1.5	90
135	Ionic liquid@MIL-101 prepared via the ship-in-bottle technique: remarkable adsorbents for the removal of benzothiophene from liquid fuel. Chemical Communications, 2016, 52, 2561-2564.	2.2	105
136	Photoreactivity of metal-organic frameworks in the decolorization of methylene blue in aqueous solution. Catalysis Today, 2016, 266, 136-143.	2.2	36
137	Adsorptive desulfurization and denitrogenation using metal-organic frameworks. Journal of Hazardous Materials, 2016, 301, 259-276.	6.5	365
138	Adsorptive removal of diclofenac sodium from water with Zr-based metal–organic frameworks. Chemical Engineering Journal, 2016, 284, 1406-1413.	6.6	303
139	Adsorptive Removal of Hazardous Organics from Water with Metal-organic Frameworks. Applied Chemistry for Engineering, 2016, 27, 358-365.	0.2	12
140	Spectroscopic methods as instruments for the prediction of catalytic behavior of metal-organic frameworks. Russian Chemical Bulletin, 2015, 64, 1772-1783.	0.4	5
141	Remarkable improvement in adsorptive denitrogenation of model fossil fuels with CuCl/activated carbon, prepared under ambient condition. Chemical Engineering Journal, 2015, 279, 327-334.	6.6	59
142	Liquid-Phase Adsorption of Aromatics over a Metal–Organic Framework and Activated Carbon: Effects of Hydrophobicity/Hydrophilicity of Adsorbents and Solvent Polarity. Journal of Physical Chemistry C, 2015, 119, 26620-26627.	1.5	86
143	Adsorptive removal of methylchlorophenoxypropionic acid from water with a metal-organic framework. Chemical Engineering Journal, 2015, 270, 22-27.	6.6	154
144	Adsorptive removal of p-arsanilic acid from water using mesoporous zeolitic imidazolate framework-8. Chemical Engineering Journal, 2015, 267, 9-15.	6.6	175

#	Article	IF	CITATIONS
145	Adsorptive removal of benzothiophene from model fuel, using modified activated carbons, in presence of diethylether. Fuel, 2015, 145, 249-255.	3.4	43
146	Facile Method To Disperse Nonporous Metal Organic Frameworks: Composite Formation with a Porous Metal Organic Framework and Application in Adsorptive Desulfurization. ACS Applied Materials & Interfaces, 2015, 7, 10429-10435.	4.0	71
147	Scandium-Triflate/Metal–Organic Frameworks: Remarkable Adsorbents for Desulfurization and Denitrogenation. Inorganic Chemistry, 2015, 54, 11498-11504.	1.9	40
148	Esterification and acetylation reactions over in situ synthesized mesoporous sulfonated silica. Chemical Engineering Journal, 2015, 278, 105-112.	6.6	23
149	Effect of Central Metal Ions of Analogous Metal–Organic Frameworks on Adsorption of Organoarsenic Compounds from Water: Plausible Mechanism of Adsorption and Water Purification. Chemistry - A European Journal, 2015, 21, 347-354.	1.7	155
150	Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal–organic frameworks. Journal of Hazardous Materials, 2015, 282, 194-200.	6.5	278
151	Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coordination Chemistry Reviews, 2015, 285, 11-23.	9.5	424
152	Desilication of ZSM-5 zeolites for mesoporosity development using microwave irradiation. Materials Research Bulletin, 2015, 61, 469-474.	2.7	21
153	Effective adsorptive removal of indole from model fuel using a metal-organic framework functionalized with amino groups. Journal of Hazardous Materials, 2015, 283, 544-550.	6.5	112
154	Sulfonic acid-functionalized MIL-101(Cr): An efficient catalyst for esterification of oleic acid and vapor-phase dehydration of butanol. Chemical Engineering Journal, 2015, 278, 265-271.	6.6	112
155	Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. Journal of Hazardous Materials, 2015, 283, 329-339.	6.5	1,142
156	Facile in situ Syntheses of Highly Water-Stable Acidic Sulfonated Mesoporous Silica without Surfactant or Template. European Journal of Inorganic Chemistry, 2014, 2014, 3420-3426.	1.0	13
157	Synthesis of ZSM-5 zeolites using hexamethylene imine as a template: Effect of microwave aging. Catalysis Today, 2014, 232, 108-113.	2.2	12
158	Rearrangement of α-pinene oxide to campholenic aldehyde over the trimesate metal–organic frameworks MIL-100, MIL-110 and MIL-96. Journal of Catalysis, 2014, 311, 114-120.	3.1	38
159	Selective hydrogenation of d-glucose to d-sorbitol over HY zeolite supported ruthenium nanoparticles catalysts. Catalysis Today, 2014, 232, 99-107.	2.2	72
160	Effects of linker substitution on catalytic properties of porous zirconium terephthalate UiO-66 in acetalization of benzaldehyde with methanol. Applied Catalysis A: General, 2014, 471, 91-97.	2.2	98
161	Composites of metal–organic frameworks: Preparation and application in adsorption. Materials Today, 2014, 17, 136-146.	8.3	349
162	Ionic Liquids Supported on Metalâ€Organic Frameworks: Remarkable Adsorbents for Adsorptive Desulfurization. Chemistry - A European Journal, 2014, 20, 376-380.	1.7	195

#	Article	IF	CITATIONS
163	Adsorptive denitrogenation of model fuel with CuCl-loaded metal–organic frameworks (MOFs). Chemical Engineering Journal, 2014, 251, 35-42.	6.6	101
164	Adsorption of Pyridine over Amino-Functionalized Metal–Organic Frameworks: Attraction via Hydrogen Bonding versus Base–Base Repulsion. Journal of Physical Chemistry C, 2014, 118, 21049-21056.	1.5	92
165	Adsorptive denitrogenation of model fossil fuels with Lewis acid-loaded metal–organic frameworks (MOFs). Chemical Engineering Journal, 2014, 255, 623-629.	6.6	58
166	Catalytic behavior of metal–organic frameworks in the Knoevenagel condensation reaction. Journal of Catalysis, 2014, 316, 251-259.	3.1	118
167	Effect of iron content on selectivity in isomerization of α-pinene oxide to campholenic aldehyde over Fe-MMM-2 and Fe-VSB-5. Applied Catalysis A: General, 2014, 469, 427-433.	2.2	32
168	Application of MCN-1 to the Adsorptive Removal of Indoor Formaldehyde. Science of Advanced Materials, 2014, 6, 1511-1515.	0.1	8
169	Preparation of a Composite of Sulfated Zirconia/Metal Organic Framework and its Application in Esterification Reaction. Bulletin of the Korean Chemical Society, 2014, 35, 1659-1664.	1.0	7
170	Graphite Oxide/Metal–Organic Framework (MIL-101): Remarkable Performance in the Adsorptive Denitrogenation of Model Fuels. Inorganic Chemistry, 2013, 52, 14155-14161.	1.9	188
171	Effect of central metal ions of analogous metal-organic frameworks on the adsorptive removal of benzothiophene from a model fuel. Journal of Hazardous Materials, 2013, 260, 1050-1056.	6.5	65
172	Adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from water with a metal–organic framework. Chemical Engineering Journal, 2013, 234, 99-105.	6.6	232
173	Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. Journal of Hazardous Materials, 2013, 244-245, 444-456.	6.5	1,140
174	Liquid-phase dehydration of sorbitol to isosorbide using sulfated zirconia as a solid acid catalyst. Applied Catalysis A: General, 2013, 452, 34-38.	2.2	66
175	Adsorption of naproxen and clofibric acid over a metal–organic framework MIL-101 functionalized with acidic and basic groups. Chemical Engineering Journal, 2013, 219, 537-544.	6.6	262
176	Facile introduction of Cu+ on activated carbon at ambient conditions and adsorption of benzothiophene over Cu+/activated carbon. Fuel Processing Technology, 2013, 116, 265-270.	3.7	37
177	Liquid-phase dehydration of sorbitol to isosorbide using sulfated titania as a solid acid catalyst. Chemical Engineering Science, 2013, 93, 91-95.	1.9	63
178	Adsorptive denitrogenation of model fuels with porous metal-organic framework (MOF) MIL-101 impregnated with phosphotungstic acid: Effect of acid site inclusion. Journal of Hazardous Materials, 2013, 250-251, 37-44.	6.5	96
179	Catalytic potential of the wonderful chameleons: Nickel phosphate molecular sieves. Applied Catalysis A: General, 2013, 455, 71-85.	2.2	20
180	Adsorptive denitrogenation of model fuels with porous metal-organic frameworks (MOFs): Effect of acidity and basicity of MOFs. Applied Catalysis B: Environmental, 2013, 129, 123-129.	10.8	141

#	Article	IF	CITATIONS
181	Effect of the acid–base properties of metal phosphate molecular sieves on the catalytic performances in synthesis of propylene glycol methyl ether from methanol and propylene oxide. Microporous and Mesoporous Materials, 2013, 165, 84-91.	2.2	15
182	Adsorptive Removal of Bisphenol-A from Water with a Metal-Organic Framework, a Porous Chromium-Benzenedicarboxylate. Journal of Nanoscience and Nanotechnology, 2013, 13, 2789-2794.	0.9	99
183	Synthesis of Mesoporous SAPO-34 Molecular Sieves and Their Applications in Dehydration of Butanols and Ethanol. Journal of Nanoscience and Nanotechnology, 2013, 13, 2782-2788.	0.9	10
184	Adsorption and Removal of Sulfur or Nitrogen-Containing Compounds with Metal-Organic Frameworks (MOFs). Advanced Porous Materials, 2013, 1, 91-102.	0.3	44
185	Analogous porous metal–organic frameworks: synthesis, stability and application in adsorption. CrystEngComm, 2012, 14, 7099.	1.3	174
186	Liquid-phase dehydration of 1-phenylethanol to styrene over sulfonated D-glucose catalyst. Catalysis Communications, 2012, 26, 30-33.	1.6	22
187	Synthesis of a Metal–Organic Framework, Iron-Benezenetricarboxylate, from Dry Gels in the Absence of Acid and Salt. Crystal Growth and Design, 2012, 12, 5878-5881.	1.4	81
188	Low-temperature loading of Cu+ species over porous metal-organic frameworks (MOFs) and adsorptive desulfurization with Cu+-loaded MOFs. Journal of Hazardous Materials, 2012, 237-238, 180-185.	6.5	124
189	Vanadium-containing nickel phosphate molecular sieves as catalysts for α-pinene oxidation with molecular oxygen: A study of the effect of vanadium content on activity and selectivity. Journal of Molecular Catalysis A, 2012, 363-364, 328-334.	4.8	16
190	Nickel phosphate molecular sieves VSB-5 as heterogeneous catalysts for synthesis of monosaccharides from formaldehyde and dihydroxyacetone. New Journal of Chemistry, 2012, 36, 2201.	1.4	6
191	Adsorptive removal of benzothiophene using porous copper-benzenetricarboxylate loaded with phosphotungstic acid. Fuel Processing Technology, 2012, 100, 49-54.	3.7	99
192	Phase-selective synthesis and phase-conversion of porous aluminum-benzenetricarboxylates with microwave irradiation. Microporous and Mesoporous Materials, 2012, 152, 235-239.	2.2	53
193	Oxidative desulfurization of benzothiophene and thiophene with WOx/ZrO2 catalysts: Effect of calcination temperature of catalysts. Journal of Hazardous Materials, 2012, 205-206, 216-221.	6.5	130
194	Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks. Journal of Hazardous Materials, 2012, 209-210, 151-157.	6.5	384
195	Remarkable Adsorption Capacity of CuCl ₂ â€Loaded Porous Vanadium Benzenedicarboxylate for Benzothiophene. Angewandte Chemie - International Edition, 2012, 51, 1198-1201.	7.2	180
196	Facile synthesis of cuprous oxide using ultrasound, microwave and electric heating: effect of heating methods on synthesis kinetics, morphology and yield. CrystEngComm, 2011, 13, 4060.	1.3	20
197	Syntheses of Metal–Organic Frameworks and Aluminophosphates under Microwave Heating: Quantitative Analysis of Accelerations. Crystal Growth and Design, 2011, 11, 4413-4421.	1.4	44
198	Remarkable adsorptive performance of a metal–organic framework, vanadium-benzenedicarboxylate (MIL-47), for benzothiophene. Chemical Communications, 2011, 47, 1306-1308.	2.2	187

#	Article	IF	CITATIONS
199	Synthesis of isostructural metal–organic frameworks, CPO-27s, with ultrasound, microwave, and conventional heating: Effect of synthesis methods and metal ions. Chemical Engineering Journal, 2011, 173, 866-872.	6.6	94
200	Liquid-phase dehydration of sorbitol under microwave irradiation in the presence of acidic resin catalysts. Research on Chemical Intermediates, 2011, 37, 1231-1238.	1.3	33
201	Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). Journal of Hazardous Materials, 2011, 185, 507-511.	6.5	977
202	Fe-containing nickel phosphate molecular sieves as heterogeneous catalysts for phenol oxidation and hydroxylation with H2O2. Applied Catalysis B: Environmental, 2011, 107, 197-204.	10.8	30
203	Chemical and Thermal Stability of Isotypic Metal–Organic Frameworks: Effect of Metal Ions. Chemistry - A European Journal, 2011, 17, 6437-6442.	1.7	264
204	Facile synthesis of nano-sized metal-organic frameworks, chromium-benzenedicarboxylate, MIL-101. Chemical Engineering Journal, 2011, 166, 1152-1157.	6.6	154
205	Facile Synthesis of VFI Molecular Sieve in the Presence of Triethylamine. Journal of Nanoscience and Nanotechnology, 2010, 10, 111-116.	0.9	0
206	Electronic Structure and Local Atomic Arrangement of Transition Metal Ions in Nanoporous Iron-Substituted Nickel Phosphates, VSB-1 and VSB-5. Journal of Nanoscience and Nanotechnology, 2010, 10, 240-245.	0.9	2
207	Phase-selective synthesis of a silicoaluminophosphate molecular sieve from dry gels. Materials Research Bulletin, 2010, 45, 377-381.	2.7	20
208	Effect of Water Concentration and Acidity on the Synthesis of Porous Chromium Benzenedicarboxylates. European Journal of Inorganic Chemistry, 2010, 2010, 1043-1048.	1.0	46
209	Accelerated Syntheses of Porous Isostructural Lanthanide–Benzenetricarboxylates (Ln–BTC) Under Ultrasound at Room Temperature. European Journal of Inorganic Chemistry, 2010, 2010, 4975-4981.	1.0	69
210	Synthesis of a Metal–Organic Framework Material, Iron Terephthalate, by Ultrasound, Microwave, and Conventional Electric Heating: A Kinetic Study. Chemistry - A European Journal, 2010, 16, 1046-1052.	1.7	294
211	Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates. Journal of Hazardous Materials, 2010, 181, 535-542.	6.5	585
212	Vapor-phase adsorption of alkylaromatics on aluminum-trimesate MIL-96: An unusual increase of adsorption capacity with temperature. Microporous and Mesoporous Materials, 2010, 129, 274-277.	2.2	24
213	Rapid syntheses of a metal–organic framework material Cu3(BTC)2(H2O)3 under microwave: a quantitative analysis of accelerated syntheses. Physical Chemistry Chemical Physics, 2010, 12, 2625.	1.3	82
214	Synthesis of isostructural porous metal-benzenedicarboxylates: Effect of metal ions on the kinetics of synthesis. CrystEngComm, 2010, 12, 2749.	1.3	47
215	Superior adsorption capacity of mesoporous carbon nitride with basic CN framework for phenol. Journal of Materials Chemistry, 2010, 20, 10801.	6.7	125
216	Phase-Transition and Phase-Selective Synthesis of Porous Chromium-Benzenedicarboxylates. Crystal Growth and Design, 2010, 10, 1860-1865.	1.4	102

#	Article	IF	CITATIONS
217	Synthesis and Humidity Sensing Characteristics of Polyaniline/BaTiO ₃ Composites. Journal of Nanoscience and Nanotechnology, 2009, 9, 318-326.	0.9	5
218	Facile Purification of Porous Metal Terephthalates with Ultrasonic Treatment in the Presence of Amides. Chemistry - A European Journal, 2009, 15, 11730-11736.	1.7	50
219	Adsorption of methane on porous metal carboxylates. Journal of Industrial and Engineering Chemistry, 2009, 15, 674-676.	2.9	31
220	Trimerization of Isobutene Over Solid Acid Catalysts. Catalysis Surveys From Asia, 2009, 13, 229-236.	1.0	28
221	Oligomerization of isobutene over aluminum chloride-loaded USY zeolite catalysts. Journal of Porous Materials, 2009, 16, 631-634.	1.3	17
222	Selective sulfoxidation of aryl sulfides by coordinatively unsaturated metal centers in chromium carboxylate MIL-101. Applied Catalysis A: General, 2009, 358, 249-253.	2.2	118
223	Trimerization of isobutene over WOx/ZrO2 catalysts. Applied Catalysis A: General, 2009, 366, 299-303.	2.2	30
224	Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie - International Edition, 2008, 47, 4144-4148.	7.2	1,111
225	Crystal size control of transition metal ion-incorporated aluminophosphate molecular sieves: Effect of ramping rate in the syntheses. Microporous and Mesoporous Materials, 2008, 112, 178-186.	2.2	42
226	Dehydrogenation of ethylbenzene with carbon dioxide over MgO-modified Al2O3-supported V–Sb oxide catalysts. Catalysis Today, 2008, 131, 140-145.	2.2	29
227	Oligomerization of isobutene over dealuminated Y zeolite catalysts. Applied Catalysis A: General, 2008, 337, 73-77.	2.2	44
228	Phase-selective crystallization of cobalt-incorporated aluminophosphate molecular sieves with large pore by microwave irradiation. Microporous and Mesoporous Materials, 2008, 109, 58-65.	2.2	35
229	High Uptakes of CO ₂ and CH ₄ in Mesoporous Metal—Organic Frameworks MIL-100 and MIL-101. Langmuir, 2008, 24, 7245-7250.	1.6	1,067
230	Isobutene Trimerization over FeCl3-modified HY Zeolites: Effect of Lewis Acid Sites. Chemistry Letters, 2007, 36, 1504-1505.	0.7	7
231	Phase Transformations and Phase-Selective Syntheses of Aluminophosphate Molecular Sieves. Journal of Nanoscience and Nanotechnology, 2007, 7, 2734-2740.	0.9	20
232	Microwave Assisted Semi-Solvothermal Synthesis of Nanocrystalline Barium Titanate. Journal of Nanoscience and Nanotechnology, 2007, 7, 952-959.	0.9	7
233	Trimerization of isobutene over zeolite catalysts: Remarkable performance over a ferrierite zeolite. Catalysis Communications, 2007, 8, 967-970.	1.6	36
234	Microwave Effect in the Fast Synthesis of Microporous Materials: Which Stage Between Nucleation and Crystal Growth is Accelerated by Microwave Irradiation?. Chemistry - A European Journal, 2007, 13, 4410-4417.	1.7	149

#	Article	IF	CITATIONS
235	Low-Temperature Adsorption/Storage of Hydrogen on FAU, MFI, and MOR Zeolites with Various Si/Al Ratios: Effect of Electrostatic Fields and Pore Structures. Chemistry - A European Journal, 2007, 13, 6502-6507.	1.7	50
236	Porous Cobalt(II)–Organic Frameworks with Corrugated Walls: Structurally Robust Gas-Sorption Materials. Angewandte Chemie - International Edition, 2007, 46, 272-275.	7.2	194
237	Low-temperature adsorption of hydrogen on ion-exchanged Y zeolites. International Journal of Hydrogen Energy, 2007, 32, 4233-4237.	3.8	26
238	Microwave synthesis, characterization and catalytic properties of titanium-incorporated ZSM-5 zeolite. Research on Chemical Intermediates, 2007, 33, 501-512.	1.3	14
239	Adsorption of Molecular Hydrogen on Coordinatively Unsaturated Ni(II) Sites in a Nanoporous Hybrid Material. Journal of the American Chemical Society, 2006, 128, 16846-16850.	6.6	191
240	Low-Temperature Adsorption of Hydrogen on Nanoporous Aluminophosphates:Â Effect of Pore Size. Journal of Physical Chemistry B, 2006, 110, 9371-9374.	1.2	75
241	Effect of carbon dioxide as oxidant in dehydrogenation of ethylbenzene over alumina-supported vanadium–antimony oxide catalyst. Catalysis Today, 2006, 112, 86-88.	2.2	16
242	CO sensor derived from mesostructured Au-doped SnO2 thin film. Applied Surface Science, 2006, 252, 4298-4305.	3.1	59
243	Morphology control of the nanoporous nickel phosphate VSB-5 from large crystals to nanocrystals. Microporous and Mesoporous Materials, 2006, 89, 9-15.	2.2	31
244	Trimerization of isobutene over cation exchange resins: Effect of physical properties of the resins and reaction conditions. Journal of Molecular Catalysis A, 2006, 260, 181-186.	4.8	39
245	Effect of Pt concentration on the physicochemical properties and CO sensing activity of mesostructured SnO2. Sensors and Actuators B: Chemical, 2006, 114, 275-282.	4.0	42
246	Hydrophobicity and catalytic properties of Ti-MFI zeolites synthesized by microwave and conventional heating. Catalysis Today, 2006, 111, 366-372.	2.2	41
247	A shape-selective catalyst for epoxidation of cyclic olefins: The nanoporous nickel phosphate VSB-5. Journal of Catalysis, 2006, 239, 97-104.	3.1	52
248	Microwave Synthesis of Hybrid Inorganic–Organic Porous Materials: Phase-Selective and Rapid Crystallization. Chemistry - A European Journal, 2006, 12, 7899-7905.	1.7	149
249	Hydrogen Storage in the Giant-Pore Metal–Organic Frameworks MIL-100 and MIL-101. Angewandte Chemie - International Edition, 2006, 45, 8227-8231.	7.2	716
250	Syntheses and applications of nanocatalysts based on nanoporous materials. International Journal of Nanotechnology, 2006, 3, 150.	0.1	14
251	Control of pore size and condensation rate of cubic mesoporous silica thin films using a swelling agent. Microporous and Mesoporous Materials, 2005, 78, 245-253.	2.2	35
252	Selective crystallization of CoAPO-34 and VAPO-5 molecular sieves under microwave irradiation in an alkaline or neutral condition. Microporous and Mesoporous Materials, 2005, 80, 147-152.	2.2	49

#	Article	IF	CITATIONS
253	Microwave Fabrication of MFI Zeolite Crystals with a Fibrous Morphology and Their Applications. Angewandte Chemie - International Edition, 2005, 44, 556-560.	7.2	161
254	Isomorphous Substitution of Transition-Metal Ions in the Nanoporous Nickel Phosphate VSB-5. Journal of Physical Chemistry B, 2005, 109, 845-850.	1.2	48
255	Facile Synthesis of Nanoporous Nickel Phosphates without Organic Templates under Microwave Irradiation. Chemistry of Materials, 2005, 17, 4455-4460.	3.2	79
256	Supramolecular Interactions and Morphology Control in Microwave Synthesis of Nanoporous Materials. Catalysis Surveys From Asia, 2004, 8, 91-110.	1.0	163
257	Nanoporous Metal-Containing Nickel Phosphates: A Class of Shape-Selective Catalyst. Angewandte Chemie - International Edition, 2004, 43, 2819-2822.	7.2	47
258	Effect of acidity and anions on synthesis of AFI molecular sieves in wide pH range of 3–10. Microporous and Mesoporous Materials, 2004, 67, 151-157.	2.2	30
259	Effects of silica on the synthesis of AFI molecular sieve in acid and base conditions under microwave irradiation. Microporous and Mesoporous Materials, 2004, 71, 135-142.	2.2	33
260	Synthesis of Transition-Metal-Incorporated Nickel Phosphate Molecular Sieves TMIâ^'VSB-1. Chemistry of Materials, 2004, 16, 5552-5555.	3.2	27
261	Template-Free Synthesis of the Nanoporous Nickel Phosphate VSB-5 under Microwave Irradiation. Chemistry of Materials, 2004, 16, 1394-1396.	3.2	43
262	Crystal morphology control of AFI type molecular sieves with microwave irradiation. Journal of Materials Chemistry, 2004, 14, 280.	6.7	107
263	Effects of reaction conditions in microwave synthesis of nanocrystalline barium titanate. Materials Letters, 2004, 58, 3161-3165.	1.3	46
264	Zeolite SUZ-4 as Selective Dehydration Catalyst for Methanol Conversion to Dimethyl Ether. Chemistry Letters, 2004, 33, 1048-1049.	0.7	27
265	Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating. Microporous and Mesoporous Materials, 2003, 64, 33-39.	2.2	188
266	An advanced MC-type oxidation process — the role of carbon dioxide. Applied Catalysis A: General, 2002, 223, 239-251.	2.2	41
267	Carbon-supported palladium-ruthenium catalyst for hydropurification of terephthalic acid. Applied Catalysis A: General, 2002, 225, 131-139.	2.2	29
268	Effects of alkali metals on the liquid phase oxidation of p-xylene. Applied Catalysis A: General, 2002, 230, 31-40.	2.2	14
269	Synthesis and characterization of the vanadium-incorporated molecular sieve VAPO-5. Applied Catalysis, 1990, 62, 61-72.	1.1	77